|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.12.26.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EulerE[n] == (((-1)^(n/2) Pi^(-1 - n) n!)/2^n) (Zeta[1 + n, 1/4] -
Zeta[1 + n, 3/4]) /; Element[n/2, Integers] && n/2 > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EulerE", "[", "n", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "/", "2"]]], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["n", "!"]]]], SuperscriptBox["2", "n"]], RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", FractionBox["1", "4"]]], "]"]], "-", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", FractionBox["3", "4"]]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[FractionBox["n", "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List[FractionBox["n", "2"], ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox["E", EulerE] </annotation> </semantics> <mi> n </mi> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> <msup> <mn> 2 </mn> <mi> n </mi> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["n", "+", "1"]], Rule[Editable, True]], ",", TagBox[FractionBox["1", "4"], Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[List[$CellContext`a, $CellContext`b], Zeta[$CellContext`a, $CellContext`b]]]] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["n", "+", "1"]], Rule[Editable, True]], ",", TagBox[FractionBox["3", "4"], Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[List[$CellContext`a, $CellContext`b], Zeta[$CellContext`a, $CellContext`b]]]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> ∈ </mo> <msup> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> EulerE </ci> <ci> n </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EulerE", "[", "n_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "/", "2"]]], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["n", "!"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", FractionBox["1", "4"]]], "]"]], "-", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", FractionBox["3", "4"]]], "]"]]]], ")"]]]], SuperscriptBox["2", "n"]], "/;", RowBox[List[RowBox[List[FractionBox["n", "2"], "\[Element]", "Integers"]], "&&", RowBox[List[FractionBox["n", "2"], ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|