|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.11.03.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fibonacci[n] == (1/Sqrt[5]) (((1 + Sqrt[5])/2)^n - ((1 - Sqrt[5])/2)^n) /;
Element[n, Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Fibonacci", "[", "n", "]"]], "\[Equal]", RowBox[List[FractionBox["1", SqrtBox["5"]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "+", SqrtBox["5"]]], "2"], ")"]], "n"], "-", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", SqrtBox["5"]]], "2"], ")"]], "n"]]], ")"]]]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mi> n </mi> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mn> 5 </mn> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Fibonacci </ci> <ci> n </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℤ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Fibonacci", "[", "n_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]]]], ")"]], "n"], "-", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]]]], ")"]], "n"]]], SqrtBox["5"]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|