|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.11.06.0019.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fibonacci[\[Nu]] \[Proportional] ((2 Log[GoldenRatio])/Sqrt[5]) \[Nu] +
(Pi^2/(2 Sqrt[5])) \[Nu]^2 + (1/Sqrt[5]) (Log[GoldenRatio]^3/3 -
(Pi^2/2) Log[GoldenRatio]) \[Nu]^3 + O[\[Nu]^4]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Fibonacci", "[", "\[Nu]", "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List["2", RowBox[List["Log", "[", "GoldenRatio", "]"]]]], SqrtBox["5"]], "\[Nu]"]], "+", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], RowBox[List["2", " ", SqrtBox["5"]]]], " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List[FractionBox["1", SqrtBox["5"]], RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Log", "[", "GoldenRatio", "]"]], "3"], "3"], "-", RowBox[List[FractionBox[RowBox[List[" ", SuperscriptBox["\[Pi]", "2"]]], "2"], " ", RowBox[List["Log", "[", "GoldenRatio", "]"]]]]]], ")"]], SuperscriptBox["\[Nu]", "3"]]], "+", RowBox[List["O", "[", SuperscriptBox["\[Nu]", "4"], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mi> ν </mi> </msub> <mo> ∝ </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ϕ </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <msqrt> <mn> 5 </mn> </msqrt> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mn> 5 </mn> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", Function[GoldenRatio]] </annotation> </semantics> <mo> ) </mo> </mrow> <mn> 3 </mn> </mfrac> <mo> - </mo> <mrow> <mfrac> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", Function[GoldenRatio]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mi> ν </mi> <mn> 4 </mn> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> Fibonacci </ci> <ci> ν </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <ci> ϕ </ci> </apply> <ci> ν </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <ln /> <ci> GoldenRatio </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <ci> GoldenRatio </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> ν </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> ν </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Fibonacci", "[", "\[Nu]_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["Log", "[", "GoldenRatio", "]"]]]], ")"]], " ", "\[Nu]"]], SqrtBox["5"]], "+", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["\[Nu]", "2"]]], RowBox[List["2", " ", SqrtBox["5"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Log", "[", "GoldenRatio", "]"]], "3"], "3"], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "GoldenRatio", "]"]]]]]], ")"]], " ", SuperscriptBox["\[Nu]", "3"]]], SqrtBox["5"]], "+", SuperscriptBox[RowBox[List["O", "[", "\[Nu]", "]"]], "4"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|