|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.11.23.0010.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[Fibonacci[k], {k, 0, n}] == Fibonacci[n + 2] - 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List["Fibonacci", "[", "k", "]"]]]], "\[Equal]", RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List["n", "+", "2"]], "]"]], "-", "2"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mi> k </mi> </msub> </mrow> <mo> ⩵ </mo> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <ci> Fibonacci </ci> <ci> k </ci> </apply> </apply> <apply> <plus /> <apply> <ci> Fibonacci </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], "n_"], RowBox[List["Fibonacci", "[", "k_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List["n", "+", "2"]], "]"]], "-", "2"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|