Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Fibonacci






Mathematica Notation

Traditional Notation









Integer Functions > Fibonacci[nu] > Summation > Finite summation





http://functions.wolfram.com/04.11.23.0001.01









  


  










Input Form





Sum[Fibonacci[p k + q] z^k, {k, 0, n}] == (Fibonacci[q] - (-1)^p z Fibonacci[q - p] + (-1)^p z^(2 + n) Fibonacci[q + p n] - z^(1 + n) Fibonacci[q + p (1 + n)])/ (1 - z LucasL[p] + (-1)^p z^2) /; Element[p, Integers] && Element[q, Integers] && Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List[RowBox[List["p", " ", "k"]], "+", "q"]], "]"]], SuperscriptBox["z", "k"]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Fibonacci", "[", "q", "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "p"], " ", "z", " ", RowBox[List["Fibonacci", "[", RowBox[List["q", "-", "p"]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "p"], " ", SuperscriptBox["z", RowBox[List["2", "+", "n"]]], " ", RowBox[List["Fibonacci", "[", RowBox[List["q", "+", RowBox[List["p", " ", "n"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["z", RowBox[List["1", "+", "n"]]], " ", RowBox[List["Fibonacci", "[", RowBox[List["q", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["1", "-", RowBox[List["z", " ", RowBox[List["LucasL", "[", "p", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "p"], SuperscriptBox["z", "2"]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["q", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mrow> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mo> + </mo> <mi> q </mi> </mrow> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mi> q </mi> </msub> <mo> - </mo> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mo> + </mo> <mi> q </mi> </mrow> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> p </mi> </msup> <mo> &#8290; </mo> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mrow> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mo> + </mo> <mi> q </mi> </mrow> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> p </mi> </msup> <mo> &#8290; </mo> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> </mrow> </msub> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> p </mi> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msub> <semantics> <mi> L </mi> <annotation encoding='Mathematica'> TagBox[&quot;L&quot;, LucasL] </annotation> </semantics> <mi> p </mi> </msub> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> q </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> Fibonacci </ci> <apply> <plus /> <apply> <times /> <ci> k </ci> <ci> p </ci> </apply> <ci> q </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Fibonacci </ci> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Fibonacci </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <ci> p </ci> </apply> <ci> q </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <ci> Fibonacci </ci> <apply> <plus /> <apply> <times /> <ci> n </ci> <ci> p </ci> </apply> <ci> q </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <ci> Fibonacci </ci> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> LucasL </ci> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> p </ci> <integers /> </apply> <apply> <in /> <ci> q </ci> <integers /> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], "n_"], RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List[RowBox[List["p_", " ", "k_"]], "+", "q_"]], "]"]], " ", SuperscriptBox["z_", "k_"]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Fibonacci", "[", "q", "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "p"], " ", "z", " ", RowBox[List["Fibonacci", "[", RowBox[List["q", "-", "p"]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "p"], " ", SuperscriptBox["z", RowBox[List["2", "+", "n"]]], " ", RowBox[List["Fibonacci", "[", RowBox[List["q", "+", RowBox[List["p", " ", "n"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["z", RowBox[List["1", "+", "n"]]], " ", RowBox[List["Fibonacci", "[", RowBox[List["q", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]]], "]"]]]]]], RowBox[List["1", "-", RowBox[List["z", " ", RowBox[List["LucasL", "[", "p", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "p"], " ", SuperscriptBox["z", "2"]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["q", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29