|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.11.23.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[1/Fibonacci[2 k - 1], {k, 1, Infinity}] ==
(Sqrt[5]/4) EllipticTheta[2, 0, 2/(3 + Sqrt[5])]^2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox["1", RowBox[List["Fibonacci", "[", RowBox[List[RowBox[List["2", "k"]], "-", "1"]], "]"]]]]], "\[Equal]", RowBox[List[FractionBox[SqrtBox["5"], "4"], SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", FractionBox["2", RowBox[List["3", "+", SqrtBox["5"]]]]]], "]"]], "2"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mn> 1 </mn> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mfrac> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <msqrt> <mn> 5 </mn> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <msub> <mi> ϑ </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 3 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Fibonacci </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 2 </cn> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], "\[Infinity]"], FractionBox["1", RowBox[List["Fibonacci", "[", RowBox[List[RowBox[List["2", " ", "k_"]], "-", "1"]], "]"]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "4"], " ", SqrtBox["5"], " ", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", FractionBox["2", RowBox[List["3", "+", SqrtBox["5"]]]]]], "]"]], "2"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|