|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.11.23.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[Sin[(n Pi Fibonacci[k - 1])/(2 Fibonacci[k + 1] Fibonacci[k])]
Cos[(n Pi Fibonacci[k + 2])/(2 Fibonacci[k + 1] Fibonacci[k])],
{k, 1, Infinity}] == 0 /; Element[n, Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["n", " ", "\[Pi]", " ", RowBox[List["Fibonacci", "[", RowBox[List["k", "-", "1"]], "]"]]]], RowBox[List["2", " ", RowBox[List["Fibonacci", "[", RowBox[List["k", "+", "1"]], "]"]], " ", RowBox[List["Fibonacci", "[", "k", "]"]]]]], "]"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["n", " ", "\[Pi]", " ", RowBox[List["Fibonacci", "[", RowBox[List["k", "+", "2"]], "]"]]]], RowBox[List["2", " ", RowBox[List["Fibonacci", "[", RowBox[List["k", "+", "1"]], "]"]], " ", RowBox[List["Fibonacci", "[", "k", "]"]]]]], "]"]]]]]], "\[Equal]", "0"]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ⁢ </mo> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mi> k </mi> </msub> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ⁢ </mo> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mi> k </mi> </msub> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> n </ci> <pi /> <apply> <ci> Fibonacci </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Fibonacci </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Fibonacci </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> n </ci> <pi /> <apply> <ci> Fibonacci </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Fibonacci </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Fibonacci </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["n_", " ", "\[Pi]", " ", RowBox[List["Fibonacci", "[", RowBox[List["k_", "-", "1"]], "]"]]]], RowBox[List["2", " ", RowBox[List["Fibonacci", "[", RowBox[List["k_", "+", "1"]], "]"]], " ", RowBox[List["Fibonacci", "[", "k_", "]"]]]]], "]"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["n_", " ", "\[Pi]", " ", RowBox[List["Fibonacci", "[", RowBox[List["k_", "+", "2"]], "]"]]]], RowBox[List["2", " ", RowBox[List["Fibonacci", "[", RowBox[List["k_", "+", "1"]], "]"]], " ", RowBox[List["Fibonacci", "[", "k_", "]"]]]]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|