  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/04.11.23.0008.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    BoxData[\(\(\(Sum[\(\(\(KroneckerDelta[\(n, \(Sum[\(\(Subscript[\(m, j\)]\), \({j, 1, k}\)\)]\)\)]\) * \(Product[\(\(Fibonacci[\(\(Subscript[\(m, j\)]\) + 1\)]\), \({j, 1, k}\)\)]\)\), \({\(Subscript[\(m, 1\)]\), 0, n}\), \({\(Subscript[\(m, 1\)]\), 0, n}\), â¦, \({\(Subscript[\(m, k\)]\), 0, n}\)\)]\) ï± \(Sum[\(\(\(Binomial[\(\(k - j + n - 1\), \(k - 1\)\)]\) * \(Binomial[\(\(n - j\), j\)]\)\), \({j, 0, \(Floor[\(n/2\)]\)}\)\)]\)\)/;\(\(n â Integers\) && \(n ⥠0\) && \(k â Integers\) && \(k > 0\)\)\)] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["m", "1"], "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["m", "2"], "=", "0"]], "n"], RowBox[List["\[Ellipsis]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["m", "k"], "=", "0"]], "n"], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "k"], SubscriptBox["m", "j"]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "k"], RowBox[List["Fibonacci", "[", RowBox[List["1", "+", SubscriptBox["m", "j"]]], "]"]]]]]]]]]]]]]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "+", "n", "-", "1", "-", "j"]], ",", RowBox[List["k", "-", "1"]]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "j"]], ",", "j"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", ">", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <msub>  <mi> m </mi>  <mn> 1 </mn>  </msub>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <msub>  <mi> m </mi>  <mn> 2 </mn>  </msub>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mo> … </mo>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <msub>  <mi> m </mi>  <mi> k </mi>  </msub>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> n </mi>  <mo> , </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> k </mi>  </munderover>  <msub>  <mi> m </mi>  <mi> j </mi>  </msub>  </mrow>  </mrow>  </msub>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> k </mi>  </munderover>  <msub>  <semantics>  <mi> F </mi>  <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation>  </semantics>  <mrow>  <msub>  <mi> m </mi>  <mi> j </mi>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mi> n </mi>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["k", "-", "j", "+", "n", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List["k", "-", "1"]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", "j"]], Identity, Rule[Editable, True]]], List[TagBox["j", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℕ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> k </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <sum />  <bvar>  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 2 </cn>  </apply>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <sum />  <bvar>  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <ci> … </ci>  <apply>  <sum />  <bvar>  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <ci> k </ci>  </apply>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <ci> KroneckerDelta </ci>  <ci> n </ci>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <product />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <ci> Fibonacci </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <ci> j </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <ci> n </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  <ci> j </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> n </ci>  <integers />  </apply>  <apply>  <in />  <ci> k </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["m_", "1"], "=", "0"]], "n_"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["m_", "2"], "=", "0"]], "n_"], RowBox[List["\[Ellipsis]_", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["m_", "k_"], "=", "0"]], "n_"], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["n_", ",", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j_", "=", "1"]], "k_"], SubscriptBox["m_", "j_"]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j_", "=", "1"]], "k_"], RowBox[List["Fibonacci", "[", RowBox[List["1", "+", SubscriptBox["m_", "j_"]]], "]"]]]]]]]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "+", "n", "-", "1", "-", "j"]], ",", RowBox[List["k", "-", "1"]]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "j"]], ",", "j"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", ">", "0"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |