|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.05.06.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FractionalPart[x] == UnitStep[x] - 1/2 -
(1/Pi) Sum[Sin[2 Pi k x]/k, {k, 1, Infinity}] /;
Element[x, Reals] && !Element[x, Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["FractionalPart", "[", "x", "]"]], "\[Equal]", RowBox[List[RowBox[List["UnitStep", "[", "x", "]"]], "-", FractionBox["1", "2"], "-", RowBox[List[FractionBox["1", "\[Pi]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List["Sin", "[", RowBox[List["2", " ", "\[Pi]", " ", "k", " ", "x"]], "]"]], RowBox[List["k", " "]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Element", "[", RowBox[List["x", ",", "Reals"]], "]"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["x", ",", "Integers"]], "]"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> frac </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> π </mi> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </mfrac> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> x </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> x </mi> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> FractionalPart </ci> <ci> x </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> k </ci> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> UnitStep </ci> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <notin /> <ci> x </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["FractionalPart", "[", "x_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["UnitStep", "[", "x", "]"]], "-", FractionBox["1", "2"], "-", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List["Sin", "[", RowBox[List["2", " ", "\[Pi]", " ", "k", " ", "x"]], "]"]], "k"]]], "\[Pi]"]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List["!", RowBox[List["x", "\[Element]", "Integers"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|