|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.05.20.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[FractionalPart[z], {z, \[Alpha]}] ==
(\[Alpha] z^(1 - \[Alpha]))/Gamma[2 - \[Alpha]] +
FractionalPart[z]/(z^\[Alpha] Gamma[1 - \[Alpha]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["FractionalPart", "[", "z", "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["\[Alpha]", " ", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]]]], RowBox[List[" ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Alpha]"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["FractionalPart", "[", "z", "]"]], SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]]]], RowBox[List[" ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> α </mi> </msup> <mrow> <mi> frac </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> α </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mi> α </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> </mrow> </msup> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> α </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mi> frac </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> α </ci> </degree> </bvar> <apply> <ci> FractionalPart </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> FractionalPart </ci> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["FractionalPart", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["\[Alpha]", " ", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]]]], RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Alpha]"]], "]"]]], "+", FractionBox[RowBox[List[RowBox[List["FractionalPart", "[", "z", "]"]], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|