  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/04.08.23.0003.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Sum[KroneckerDelta[1, GCD[k, n]]/(n^2 (k + n)), {n, 1, Infinity}, 
  {k, 1, n}] == 3/4 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List["KroneckerDelta", "[", RowBox[List["1", ",", " ", RowBox[List["GCD", "[", RowBox[List["k", ",", "n"]], "]"]]]], "]"]], RowBox[List[SuperscriptBox["n", "2"], RowBox[List["(", RowBox[List["k", "+", "n"]], ")"]]]]]]]]], "\[Equal]", FractionBox["3", "4"]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> n </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mfrac>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mrow>  <mi> gcd </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msub>  <mrow>  <msup>  <mi> n </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> n </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <ci> KroneckerDelta </ci>  <cn type='integer'> 1 </cn>  <apply>  <gcd />  <ci> k </ci>  <ci> n </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <ci> k </ci>  <ci> n </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], "n_"], FractionBox[RowBox[List["KroneckerDelta", "[", RowBox[List["1", ",", RowBox[List["GCD", "[", RowBox[List["k_", ",", "n_"]], "]"]]]], "]"]], RowBox[List[SuperscriptBox["n_", "2"], " ", RowBox[List["(", RowBox[List["k_", "+", "n_"]], ")"]]]]]]]]], "]"]], "\[RuleDelayed]", FractionBox["3", "4"]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |