|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.08.25.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Limit[(1/n^r) Sum[\[Ellipsis] Sum[GCD[Subscript[k, 1], Subscript[k, 2],
\[Ellipsis], Subscript[k, r]]^k, {Subscript[k, r], 1, n}],
{Subscript[k, 1], 1, n}, {Subscript[k, 2], 1, n}], n -> Infinity] ==
Zeta[r - k]/Zeta[r]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List[FractionBox["1", SuperscriptBox["n", "r"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "1"]], "n"], RowBox[List["\[Ellipsis]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "r"], "=", "1"]], "n"], SuperscriptBox[RowBox[List["GCD", "[", RowBox[List[SubscriptBox["k", "1"], ",", SubscriptBox["k", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["k", "r"]]], "]"]], "k"]]]]]]]]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]], "\[Equal]", FractionBox[RowBox[List["Zeta", "[", RowBox[List["r", "-", "k"]], "]"]], RowBox[List["Zeta", "[", "r", "]"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munder> <mi> lim </mi> <mrow> <mi> n </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <mrow> <mfrac> <mn> 1 </mn> <msup> <mi> n </mi> <mi> r </mi> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mo> … </mo> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mi> r </mi> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <msup> <mrow> <mi> gcd </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> k </mi> <mi> r </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mfrac> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> r </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List["r", "-", "k"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["r", Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <limit /> <bvar> <ci> n </ci> </bvar> <condition> <apply> <tendsto /> <ci> n </ci> <infinity /> </apply> </condition> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> n </ci> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <ci> … </ci> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> r </ci> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <power /> <apply> <gcd /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> r </ci> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> r </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Limit", "[", RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k_", "1"], "=", "1"]], "n_"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k_", "2"], "=", "1"]], "n_"], RowBox[List["\[Ellipsis]_", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k_", "r_"], "=", "1"]], "n_"], SuperscriptBox[RowBox[List["GCD", "[", RowBox[List[SubscriptBox["k_", "1"], ",", SubscriptBox["k_", "2"], ",", "\[Ellipsis]_", ",", SubscriptBox["k_", "r_"]]], "]"]], "k_"]]]]]]]]], SuperscriptBox["n_", "r_"]], ",", RowBox[List["n_", "\[Rule]", "\[Infinity]"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["Zeta", "[", RowBox[List["r", "-", "k"]], "]"]], RowBox[List["Zeta", "[", "r", "]"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|