|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.06.03.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mod[Binomial[2 p - 1, p - 1], p^3] == 1 /; Element[p, Primes] && p > 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Mod", "[", RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", "p"]], "-", "1"]], ",", RowBox[List["p", "-", "1"]]]], "]"]], ",", SuperscriptBox["p", "3"]]], "]"]], "\[Equal]", "1"]], "/;", " ", RowBox[List[RowBox[List["p", "\[Element]", "Primes"]], "\[And]", RowBox[List["p", ">", "3"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <msup> <mi> p </mi> <mn> 3 </mn> </msup> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> $CellContext`p </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> $CellContext`p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> $CellContext`p </ci> <cn type='integer'> 3 </cn> </apply> </apply> </annotation-xml> </semantics> <mo> ⩵ </mo> <mn> 1 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> ∈ </mo> <semantics> <mi> ℙ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalP]", Function[Primes]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> p </mi> <mo> > </mo> <mn> 3 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <rem /> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> $CellContext`p </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> $CellContext`p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> $CellContext`p </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <and /> <apply> <in /> <ci> p </ci> <primes /> </apply> <apply> <gt /> <ci> p </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Mod", "[", RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "p_"]], "-", "1"]], ",", RowBox[List["p_", "-", "1"]]]], "]"]], ",", SuperscriptBox["p_", "3"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["1", "/;", RowBox[List[RowBox[List["p", "\[Element]", "Primes"]], "&&", RowBox[List["p", ">", "3"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|