  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/04.17.06.0002.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    PartitionsQ[n] == ((Pi^2 Sqrt[2])/24) 
   Sum[(A[2 k - 1, n]/(1 - 2 k)^2) Hypergeometric0F1[2, 
      (Pi^2 (n + 1/24))/(12 (1 - 2 k)^2)], {k, 1, Infinity}] /; 
 A[k, n] == Sum[KroneckerDelta[GCD[h, k], 1] 
    Exp[Pi I Sum[(j/k) ((h j)/k - Floor[(h j)/k] - 1/2), {j, 1, k - 1}] - 
      (2 Pi I h n)/k], {h, 1, k}] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PartitionsQ", "[", "n", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], SqrtBox["2"]]], "24"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["A", "[", RowBox[List[RowBox[List[RowBox[List["2", "k"]], "-", "1"]], ",", "n"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", "k"]]]], ")"]], "2"]], RowBox[List["Hypergeometric0F1", "[", RowBox[List["2", ",", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "24"]]], ")"]]]], RowBox[List["12", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", "k"]]]], ")"]], "2"]]]]]], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List["A", "[", RowBox[List["k", ",", "n"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "1"]], "k"], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List[RowBox[List["GCD", "[", RowBox[List["h", ",", "k"]], "]"]], ",", "1"]], "]"]], RowBox[List["Exp", "[", RowBox[List[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["k", "-", "1"]]], RowBox[List[FractionBox[RowBox[List["j", " "]], "k"], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["h", " ", "j"]], "k"], "-", RowBox[List["Floor", "[", FractionBox[RowBox[List["h", " ", "j"]], "k"], "]"]], "-", FractionBox["1", "2"]]], ")"]]]]]]]], "-", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "h", " ", "n"]], "k"]]], "]"]]]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <semantics>  <mi> q </mi>  <annotation encoding='Mathematica'> TagBox["q", PartitionsQ] </annotation>  </semantics>  <mo> ( </mo>  <mi> n </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> π </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  <mn> 24 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> A </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 0 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mo>   </mo>  <mo> ; </mo>  <mn> 2 </mn>  <mo> ; </mo>  <mfrac>  <mrow>  <msup>  <mi> π </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 24 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["2", Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "24"]]], ")"]]]], RowBox[List["12", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "k"]]]], ")"]], "2"]]]], Hypergeometric0F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> A </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mrow>  <mi> gcd </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> ⁢ </mo>  <mtext>     </mtext>  <mrow>  <mi> exp </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mi> k </mi>  </mfrac>  <mo> ⁢ </mo>  <mi> j </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> h </mi>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mi> k </mi>  </mfrac>  <mo> - </mo>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> h </mi>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mi> k </mi>  </mfrac>  <mo> ⌋ </mo>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> h </mi>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mi> k </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> PartitionsQ </ci>  <ci> n </ci>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <pi />  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 24 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <ci> A </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <ci> n </ci>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Hypergeometric0F1 </ci>  <cn type='integer'> 2 </cn>  <apply>  <times />  <apply>  <power />  <pi />  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <ci> n </ci>  <cn type='rational'> 1 <sep /> 24 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <eq />  <apply>  <ci> A </ci>  <ci> k </ci>  <ci> n </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <times />  <apply>  <ci> KroneckerDelta </ci>  <apply>  <gcd />  <ci> h </ci>  <ci> k </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <exp />  <apply>  <plus />  <apply>  <times />  <pi />  <imaginaryi />  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> j </ci>  <apply>  <plus />  <apply>  <times />  <ci> h </ci>  <ci> j </ci>  <apply>  <power />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <floor />  <apply>  <times />  <ci> h </ci>  <ci> j </ci>  <apply>  <power />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  <imaginaryi />  <ci> h </ci>  <ci> n </ci>  <apply>  <power />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PartitionsQ", "[", "n_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "24"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", SqrtBox["2"]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["A", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "k"]], "-", "1"]], ",", "n"]], "]"]], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List["2", ",", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "24"]]], ")"]]]], RowBox[List["12", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "k"]]]], ")"]], "2"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "k"]]]], ")"]], "2"]]]]]], "/;", RowBox[List[RowBox[List["A", "[", RowBox[List["k", ",", "n"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "1"]], "k"], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List[RowBox[List["GCD", "[", RowBox[List["h", ",", "k"]], "]"]], ",", "1"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["k", "-", "1"]]], FractionBox[RowBox[List["j", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["h", " ", "j"]], "k"], "-", RowBox[List["Floor", "[", FractionBox[RowBox[List["h", " ", "j"]], "k"], "]"]], "-", FractionBox["1", "2"]]], ")"]]]], "k"]]]]], "-", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "h", " ", "n"]], "k"]]]]]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |