|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.07.21.0013.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[t^(\[Alpha] - 1) Quotient[m, t], {t, a, Infinity}] ==
((-a^\[Alpha]) Quotient[m, a] + m^\[Alpha] (Zeta[\[Alpha]] -
Zeta[\[Alpha], 1 + Quotient[m, a]]))/\[Alpha]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "a", "\[Infinity]"], RowBox[List[SuperscriptBox["t", RowBox[List["\[Alpha]", "-", "1"]]], " ", RowBox[List["Quotient", "[", RowBox[List["m", ",", "t"]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["a", "\[Alpha]"]]], " ", RowBox[List["Quotient", "[", RowBox[List["m", ",", "a"]], "]"]]]], "+", RowBox[List[SuperscriptBox["m", "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", "\[Alpha]", "]"]], "-", RowBox[List["Zeta", "[", RowBox[List["\[Alpha]", ",", RowBox[List["1", "+", RowBox[List["Quotient", "[", RowBox[List["m", ",", "a"]], "]"]]]]]], "]"]]]], ")"]]]]]], "\[Alpha]"]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mi> a </mi> <mi> ∞ </mi> </msubsup> <mrow> <msup> <mi> t </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> quotient </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> m </mi> <mo> , </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> α </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> m </mi> <mi> α </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["\[Alpha]", Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> , </mo> <mrow> <mrow> <mi> quotient </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> m </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["\[Alpha]", Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["quotient", "(", RowBox[List["m", ",", "a"]], ")"]], "+", "1"]], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`x, $CellContext`y], Zeta[$CellContext`x, $CellContext`y]]]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mi> α </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> quotient </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> m </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <ci> a </ci> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> t </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> quotient </ci> <ci> m </ci> <ci> t </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> m </ci> <ci> α </ci> </apply> <apply> <plus /> <apply> <ci> Zeta </ci> <ci> α </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Zeta </ci> <ci> α </ci> <apply> <plus /> <apply> <ci> quotient </ci> <ci> m </ci> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <ci> α </ci> </apply> <apply> <ci> quotient </ci> <ci> m </ci> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "a_", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["t_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["Quotient", "[", RowBox[List["m_", ",", "t_"]], "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["a", "\[Alpha]"]]], " ", RowBox[List["Quotient", "[", RowBox[List["m", ",", "a"]], "]"]]]], "+", RowBox[List[SuperscriptBox["m", "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", "\[Alpha]", "]"]], "-", RowBox[List["Zeta", "[", RowBox[List["\[Alpha]", ",", RowBox[List["1", "+", RowBox[List["Quotient", "[", RowBox[List["m", ",", "a"]], "]"]]]]]], "]"]]]], ")"]]]]]], "\[Alpha]"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|