| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/04.07.22.0003.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | FourierSinTransform[Quotient[t, n], t, z] == 
 -(1/(Sqrt[2 Pi] z)) - (Sqrt[2 Pi] Derivative[1][DiracDelta][z])/n + 
  (1/Sqrt[2 Pi]) Sum[(1/k) (DiracDelta[(2 k Pi)/n - z] - 
      DiracDelta[(2 k Pi)/n + z]), {k, 1, Infinity}] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["FourierSinTransform", "[", RowBox[List[RowBox[List["Quotient", "[", RowBox[List["t", ",", "n"]], "]"]], ",", "t", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", "z"]]]]], "-", FractionBox[RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List[SuperscriptBox["DiracDelta", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "n"], "+", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox["1", "k"], RowBox[List["(", RowBox[List[RowBox[List["DiracDelta", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "k", " ", "\[Pi]"]], "n"], "-", "z"]], "]"]], " ", "-", RowBox[List["DiracDelta", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "k", " ", "\[Pi]"]], "n"], "+", "z"]], "]"]]]], ")"]]]]]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msub>  <mi> ℱ𝓈 </mi>  <mi> t </mi>  </msub>  <mo> [ </mo>  <mrow>  <mi> quotient </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> t </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ] </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mi> k </mi>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> DiracDelta </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mi> n </mi>  </mfrac>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> DiracDelta </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mi> n </mi>  </mfrac>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <msup>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> DiracDelta </ci>  </annotation-xml>  </semantics>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> n </mi>  </mfrac>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <times />  <apply>  <apply>  <ci> Subscript </ci>  <ci> ℱ𝓈 </ci>  <ci> t </ci>  </apply>  <apply>  <ci> quotient </ci>  <ci> t </ci>  <ci> n </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <ci> DiracDelta </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  <pi />  <apply>  <power />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> DiracDelta </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  <ci> k </ci>  <apply>  <power />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> DiracDelta </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["FourierSinTransform", "[", RowBox[List[RowBox[List["Quotient", "[", RowBox[List["t_", ",", "n_"]], "]"]], ",", "t_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", "z"]]]]], "-", FractionBox[RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List[SuperscriptBox["DiracDelta", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "n"], "+", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["DiracDelta", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "k", " ", "\[Pi]"]], "n"], "-", "z"]], "]"]], "-", RowBox[List["DiracDelta", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "k", " ", "\[Pi]"]], "n"], "+", "z"]], "]"]]]], "k"]]], SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |