Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











MathieuC






Mathematica Notation

Traditional Notation









Mathieu and Spheroidal Functions > MathieuC[a,q,z] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/11.01.06.0001.01









  


  










Input Form





MathieuC[MathieuCharacteristicA[2 n, q], q, z] == Sum[Subscript[A, 2 k]^(2 n) Cos[2 k z], {k, 0, Infinity}] /; MathieuCharacteristicA[2 n, q] Subscript[A, 0]^(2 n) - q Subscript[A, 2]^(2 n) == 0 && (MathieuCharacteristicA[2 n, q] - 4) Subscript[A, 2]^(2 n) - q (Subscript[A, 4]^(2 n) - 2 Subscript[A, 0]^(2 n)) == 0 && (MathieuCharacteristicA[2 n, q] - 4 k^2) Subscript[A, 2 k]^(2 n) - q (Subscript[A, 2 k + 2]^(2 n) + Subscript[A, 2 k - 2]^(2 n)) == 0 && 2 (Subscript[A, 0]^(2 n))^2 + Sum[Subscript[A, 2 k]^(2 n), {k, 1, Infinity}] == 1 && Element[n, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MathieuC", "[", RowBox[List[RowBox[List["MathieuCharacteristicA", "[", RowBox[List[RowBox[List["2", "n"]], ",", "q"]], "]"]], ",", "q", ",", "z"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubsuperscriptBox["A", RowBox[List[" ", RowBox[List["2", " ", "k"]]]], RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]]], RowBox[List["Cos", "[", RowBox[List["2", "k", " ", "z"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["MathieuCharacteristicA", "[", RowBox[List[RowBox[List["2", "n"]], ",", "q"]], "]"]], SubsuperscriptBox["A", RowBox[List[" ", "0"]], RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]]]]], "-", RowBox[List["q", " ", SubsuperscriptBox["A", RowBox[List[" ", "2"]], RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]]]]]]], "\[Equal]", "0"]], "\[And]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["MathieuCharacteristicA", "[", RowBox[List[RowBox[List["2", "n"]], ",", "q"]], "]"]], "-", "4"]], ")"]], SubsuperscriptBox["A", RowBox[List[" ", "2"]], RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]]]]], "-", RowBox[List["q", RowBox[List["(", " ", RowBox[List[SubsuperscriptBox["A", RowBox[List[" ", "4"]], RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]]], "-", RowBox[List["2", SubsuperscriptBox["A", RowBox[List[" ", "0"]], RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]]]]]]], ")"]]]]]], "\[Equal]", "0"]], "\[And]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["MathieuCharacteristicA", "[", RowBox[List[RowBox[List["2", "n"]], ",", "q"]], "]"]], "-", RowBox[List["4", SuperscriptBox["k", "2"]]]]], ")"]], SubsuperscriptBox["A", RowBox[List[" ", RowBox[List["2", "k"]]]], RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]]]]], "-", RowBox[List["q", RowBox[List["(", " ", RowBox[List[SubsuperscriptBox["A", RowBox[List[" ", RowBox[List[RowBox[List["2", "k"]], "+", "2"]]]], RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]]], "+", SubsuperscriptBox["A", RowBox[List[" ", RowBox[List[RowBox[List["2", "k"]], "-", "2"]]]], RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]]]]], ")"]]]]]], "\[Equal]", "0"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", SubsuperscriptBox["A", "0", RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]]], ")"]], "2"]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], SubsuperscriptBox["A", RowBox[List["2", " ", "k"]], RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]]]]]]], "\[Equal]", "1"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Ce </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> a </mi> <annotation-xml encoding='MathML-Content'> <ci> MathieuCharacteristicA </ci> </annotation-xml> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mo> , </mo> <mi> q </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msubsup> <mi> A </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msubsup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mrow> <mrow> <msub> <semantics> <mi> a </mi> <annotation-xml encoding='MathML-Content'> <ci> MathieuCharacteristicA </ci> </annotation-xml> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <mi> A </mi> <mn> 0 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msubsup> </mrow> <mo> - </mo> <mrow> <mi> q </mi> <mo> &#8290; </mo> <msubsup> <mi> A </mi> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msubsup> </mrow> </mrow> <mo> &#10869; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> a </mi> <annotation-xml encoding='MathML-Content'> <ci> MathieuCharacteristicA </ci> </annotation-xml> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <mi> A </mi> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msubsup> </mrow> <mo> - </mo> <mrow> <mi> q </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> A </mi> <mn> 4 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msubsup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msubsup> <mi> A </mi> <mn> 0 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msubsup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> a </mi> <annotation-xml encoding='MathML-Content'> <ci> MathieuCharacteristicA </ci> </annotation-xml> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> k </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <mi> A </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msubsup> </mrow> <mo> - </mo> <mrow> <mi> q </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> A </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msubsup> <mo> + </mo> <msubsup> <mi> A </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msubsup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msubsup> <mi> A </mi> <mn> 0 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msubsup> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <msubsup> <mi> A </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msubsup> </mrow> </mrow> <mo> &#10869; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Ce </ci> <apply> <ci> MathieuCharacteristicA </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <ci> q </ci> </apply> <ci> q </ci> <ci> z </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <ci> MathieuCharacteristicA </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <ci> q </ci> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> q </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> MathieuCharacteristicA </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <ci> q </ci> </apply> <cn type='integer'> -4 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> q </ci> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> MathieuCharacteristicA </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> q </ci> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <power /> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MathieuC", "[", RowBox[List[RowBox[List["MathieuCharacteristicA", "[", RowBox[List[RowBox[List["2", " ", "n_"]], ",", "q_"]], "]"]], ",", "q_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubsuperscriptBox["A", RowBox[List["2", " ", "k"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "k", " ", "z"]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["MathieuCharacteristicA", "[", RowBox[List[RowBox[List["2", " ", "n"]], ",", "q"]], "]"]], " ", SubsuperscriptBox["A", "0", RowBox[List["2", " ", "n"]]]]], "-", RowBox[List["q", " ", SubsuperscriptBox["A", "2", RowBox[List["2", " ", "n"]]]]]]], "\[Equal]", "0"]], "&&", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["MathieuCharacteristicA", "[", RowBox[List[RowBox[List["2", " ", "n"]], ",", "q"]], "]"]], "-", "4"]], ")"]], " ", SubsuperscriptBox["A", "2", RowBox[List["2", " ", "n"]]]]], "-", RowBox[List["q", " ", RowBox[List["(", RowBox[List[SubsuperscriptBox["A", "4", RowBox[List["2", " ", "n"]]], "-", RowBox[List["2", " ", SubsuperscriptBox["A", "0", RowBox[List["2", " ", "n"]]]]]]], ")"]]]]]], "\[Equal]", "0"]], "&&", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["MathieuCharacteristicA", "[", RowBox[List[RowBox[List["2", " ", "n"]], ",", "q"]], "]"]], "-", RowBox[List["4", " ", SuperscriptBox["k", "2"]]]]], ")"]], " ", SubsuperscriptBox["A", RowBox[List["2", " ", "k"]], RowBox[List["2", " ", "n"]]]]], "-", RowBox[List["q", " ", RowBox[List["(", RowBox[List[SubsuperscriptBox["A", RowBox[List[RowBox[List["2", " ", "k"]], "+", "2"]], RowBox[List["2", " ", "n"]]], "+", SubsuperscriptBox["A", RowBox[List[RowBox[List["2", " ", "k"]], "-", "2"]], RowBox[List["2", " ", "n"]]]]], ")"]]]]]], "\[Equal]", "0"]], "&&", RowBox[List[RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", SubsuperscriptBox["A", "0", RowBox[List["2", " ", "n"]]], ")"]], "2"]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], SubsuperscriptBox["A", RowBox[List["2", " ", "k"]], RowBox[List["2", " ", "n"]]]]]]], "\[Equal]", "1"]], "&&", RowBox[List["n", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29