|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/11.02.33.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[Integrate[E^(2 I q Sin[t] Sin[z]) MathieuS[MathieuCharacteristicB[r, q], q,
t], {t, -Pi, Pi}]/MathieuS[MathieuCharacteristicB[r, q], q, z], z] ==
0 /; Element[r, Rationals]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "z"], RowBox[List[RowBox[List["(", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Pi]"]], "\[Pi]"], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "q", " ", RowBox[List["Sin", "[", "t", "]"]], " ", RowBox[List["Sin", "[", "z", "]"]]]]], " ", RowBox[List["MathieuS", "[", RowBox[List[RowBox[List["MathieuCharacteristicB", "[", RowBox[List["r", ",", "q"]], "]"]], ",", "q", ",", "t"]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], ")"]], "/", RowBox[List["MathieuS", "[", RowBox[List[RowBox[List["MathieuCharacteristicB", "[", RowBox[List["r", ",", "q"]], "]"]], ",", "q", ",", "z"]], "]"]]]]]], "\[Equal]", "0"]], "/;", " ", RowBox[List["r", "\[Element]", "Rationals"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <mo> ∂ </mo> <mfrac> <mrow> <msubsup> <mo> ∫ </mo> <mrow> <mo> - </mo> <mi> π </mi> </mrow> <mi> π </mi> </msubsup> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Se </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> b </mi> <annotation-xml encoding='MathML-Content'> <ci> MathieuCharacteristicB </ci> </annotation-xml> </semantics> <mi> r </mi> </msub> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mo> , </mo> <mi> q </mi> <mo> , </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mrow> <mi> Se </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> b </mi> <annotation-xml encoding='MathML-Content'> <ci> MathieuCharacteristicB </ci> </annotation-xml> </semantics> <mi> r </mi> </msub> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mo> , </mo> <mi> q </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> ∂ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mi> r </mi> <mo> ∈ </mo> <semantics> <mi> ℚ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalQ]", Function[Rationals]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> </lowlimit> <uplimit> <pi /> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> q </ci> <apply> <sin /> <ci> t </ci> </apply> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Se </ci> <apply> <ci> MathieuCharacteristicB </ci> <ci> r </ci> <ci> q </ci> </apply> <ci> q </ci> <ci> t </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Se </ci> <apply> <ci> MathieuCharacteristicB </ci> <ci> r </ci> <ci> q </ci> </apply> <ci> q </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <ci> r </ci> <rationals /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["z_"]]], FractionBox[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Pi]"]], "\[Pi]"], RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "q_", " ", RowBox[List["Sin", "[", "t_", "]"]], " ", RowBox[List["Sin", "[", "z_", "]"]]]]], " ", RowBox[List["MathieuS", "[", RowBox[List[RowBox[List["MathieuCharacteristicB", "[", RowBox[List["r_", ",", "q_"]], "]"]], ",", "q_", ",", "t_"]], "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], RowBox[List["MathieuS", "[", RowBox[List[RowBox[List["MathieuCharacteristicB", "[", RowBox[List["r_", ",", "q_"]], "]"]], ",", "q_", ",", "z_"]], "]"]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List["r", "\[Element]", "Rationals"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|