Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











MathieuSPrime






Mathematica Notation

Traditional Notation









Mathieu and Spheroidal Functions > MathieuSPrime[a,q,z] > Series representations > Generalized power series > Expansions at q==0





http://functions.wolfram.com/11.04.06.0004.01









  


  










Input Form





MathieuSPrime[MathieuCharacteristicB[1, q], q, z] \[Proportional] Cos[z] - (3/8) Cos[3 z] q + (-(Cos[z]/128) + (3/64) Cos[3 z] + (5/192) Cos[5 z]) q^2 + (Cos[z]/512 + Cos[3 z]/1024 - (5 Cos[5 z])/1152 - (7 Cos[7 z])/9216) q^3 + (-((37 Cos[z])/294912) - (49 Cos[3 z])/24576 + (7 Cos[7 z])/49152 + Cos[9 z]/81920) q^4 + (-((121 Cos[z])/1769472) + (317 Cos[3 z])/786432 + (205 Cos[5 z])/1179648 - (7 Cos[7 z])/5898240 - Cos[9 z]/409600 - (11 Cos[11 z])/88473600) q^5 + ((8105 Cos[z])/339738624 + (103 Cos[3 z])/18874368 - (731 Cos[5 z])/18874368 - (2653 Cos[7 z])/471859200 + Cos[9 z]/31457280 + (11 Cos[11 z])/424673280 + (13 Cos[13 z])/14863564800) q^6 + O[q]^11










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["MathieuSPrime", "[", RowBox[List[RowBox[List["MathieuCharacteristicB", "[", RowBox[List["1", ",", "q"]], "]"]], ",", "q", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "-", RowBox[List[FractionBox["3", "8"], " ", RowBox[List["Cos", "[", RowBox[List["3", " ", "z"]], "]"]], " ", "q"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Cos", "[", "z", "]"]], "128"]]], "+", RowBox[List[FractionBox["3", "64"], " ", RowBox[List["Cos", "[", RowBox[List["3", " ", "z"]], "]"]]]], "+", RowBox[List[FractionBox["5", "192"], " ", RowBox[List["Cos", "[", RowBox[List["5", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox["q", "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["Cos", "[", "z", "]"]], "512"], "+", FractionBox[RowBox[List["Cos", "[", RowBox[List["3", " ", "z"]], "]"]], "1024"], "-", FractionBox[RowBox[List["5", " ", RowBox[List["Cos", "[", RowBox[List["5", " ", "z"]], "]"]]]], "1152"], "-", FractionBox[RowBox[List["7", " ", RowBox[List["Cos", "[", RowBox[List["7", " ", "z"]], "]"]]]], "9216"]]], ")"]], " ", SuperscriptBox["q", "3"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["37", " ", RowBox[List["Cos", "[", "z", "]"]]]], "294912"]]], "-", FractionBox[RowBox[List["49", " ", RowBox[List["Cos", "[", RowBox[List["3", " ", "z"]], "]"]]]], "24576"], "+", FractionBox[RowBox[List["7", " ", RowBox[List["Cos", "[", RowBox[List["7", " ", "z"]], "]"]]]], "49152"], "+", FractionBox[RowBox[List["Cos", "[", RowBox[List["9", " ", "z"]], "]"]], "81920"]]], ")"]], " ", SuperscriptBox["q", "4"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["121", " ", RowBox[List["Cos", "[", "z", "]"]]]], "1769472"]]], "+", FractionBox[RowBox[List["317", " ", RowBox[List["Cos", "[", RowBox[List["3", " ", "z"]], "]"]]]], "786432"], "+", FractionBox[RowBox[List["205", " ", RowBox[List["Cos", "[", RowBox[List["5", " ", "z"]], "]"]]]], "1179648"], "-", FractionBox[RowBox[List["7", " ", RowBox[List["Cos", "[", RowBox[List["7", " ", "z"]], "]"]]]], "5898240"], "-", FractionBox[RowBox[List["Cos", "[", RowBox[List["9", " ", "z"]], "]"]], "409600"], "-", FractionBox[RowBox[List["11", " ", RowBox[List["Cos", "[", RowBox[List["11", " ", "z"]], "]"]]]], "88473600"]]], ")"]], " ", SuperscriptBox["q", "5"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["8105", " ", RowBox[List["Cos", "[", "z", "]"]]]], "339738624"], "+", FractionBox[RowBox[List["103", " ", RowBox[List["Cos", "[", RowBox[List["3", " ", "z"]], "]"]]]], "18874368"], "-", FractionBox[RowBox[List["731", " ", RowBox[List["Cos", "[", RowBox[List["5", " ", "z"]], "]"]]]], "18874368"], "-", FractionBox[RowBox[List["2653", " ", RowBox[List["Cos", "[", RowBox[List["7", " ", "z"]], "]"]]]], "471859200"], "+", FractionBox[RowBox[List["Cos", "[", RowBox[List["9", " ", "z"]], "]"]], "31457280"], "+", FractionBox[RowBox[List["11", " ", RowBox[List["Cos", "[", RowBox[List["11", " ", "z"]], "]"]]]], "424673280"], "+", FractionBox[RowBox[List["13", " ", RowBox[List["Cos", "[", RowBox[List["13", " ", "z"]], "]"]]]], "14863564800"]]], ")"]], " ", SuperscriptBox["q", "6"]]], "+", SuperscriptBox[RowBox[List["O", "[", "q", "]"]], "11"]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> Se </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> b </mi> <annotation-xml encoding='MathML-Content'> <ci> MathieuCharacteristicB </ci> </annotation-xml> </semantics> <mn> 1 </mn> </msub> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mo> , </mo> <mi> q </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 128 </mn> </mfrac> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 64 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 192 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> q </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 512 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mn> 1024 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 1152 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 9216 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> q </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 37 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mn> 294912 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 49152 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mn> 81920 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 49 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 24576 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> q </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 121 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mn> 1769472 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 317 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 786432 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 205 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 1179648 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mn> 409600 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 5898240 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 88473600 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> q </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 8105 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mn> 339738624 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 103 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 18874368 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mn> 31457280 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 424673280 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 13 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 13 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 14863564800 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 731 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 18874368 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 2653 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 471859200 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> q </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <semantics> <msup> <mrow> <mi> O </mi> <mo> [ </mo> <mi> q </mi> <mo> ] </mo> </mrow> <mn> 11 </mn> </msup> <annotation-xml encoding='MathML-Content'> <apply> <ci> SeriesData </ci> <ci> $CellContext`q </ci> <cn type='integer'> 0 </cn> <list /> <cn type='integer'> 0 </cn> <cn type='integer'> 11 </cn> <cn type='integer'> 1 </cn> </apply> </annotation-xml> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> Se </ci> </apply> <apply> <ci> MathieuCharacteristicB </ci> <cn type='integer'> 1 </cn> <ci> q </ci> </apply> <ci> q </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <cos /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 3 <sep /> 8 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> <ci> q </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <cos /> <ci> z </ci> </apply> <apply> <power /> <cn type='integer'> 128 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 3 <sep /> 64 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 5 <sep /> 192 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> q </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <cos /> <ci> z </ci> </apply> <apply> <power /> <cn type='integer'> 512 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 1024 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 1152 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 7 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 9216 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> q </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 37 </cn> <apply> <cos /> <ci> z </ci> </apply> <apply> <power /> <cn type='integer'> 294912 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 7 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 49152 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 81920 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 49 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 24576 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> q </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 121 </cn> <apply> <cos /> <ci> z </ci> </apply> <apply> <power /> <cn type='integer'> 1769472 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 317 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 786432 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 205 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 1179648 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 409600 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 7 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 5898240 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 11 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 88473600 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> q </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8105 </cn> <apply> <cos /> <ci> z </ci> </apply> <apply> <power /> <cn type='integer'> 339738624 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 103 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 18874368 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 31457280 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 11 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 11 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 424673280 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 13 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 13 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 14863564800 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 731 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 18874368 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2653 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 7 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 471859200 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> q </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <ci> SeriesData </ci> <ci> $CellContext`q </ci> <cn type='integer'> 0 </cn> <list /> <cn type='integer'> 0 </cn> <cn type='integer'> 11 </cn> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MathieuSPrime", "[", RowBox[List[RowBox[List["MathieuCharacteristicB", "[", RowBox[List["1", ",", "q_"]], "]"]], ",", "q_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "-", RowBox[List[FractionBox["3", "8"], " ", RowBox[List["Cos", "[", RowBox[List["3", " ", "z"]], "]"]], " ", "q"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Cos", "[", "z", "]"]], "128"]]], "+", RowBox[List[FractionBox["3", "64"], " ", RowBox[List["Cos", "[", RowBox[List["3", " ", "z"]], "]"]]]], "+", RowBox[List[FractionBox["5", "192"], " ", RowBox[List["Cos", "[", RowBox[List["5", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox["q", "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["Cos", "[", "z", "]"]], "512"], "+", FractionBox[RowBox[List["Cos", "[", RowBox[List["3", " ", "z"]], "]"]], "1024"], "-", FractionBox[RowBox[List["5", " ", RowBox[List["Cos", "[", RowBox[List["5", " ", "z"]], "]"]]]], "1152"], "-", FractionBox[RowBox[List["7", " ", RowBox[List["Cos", "[", RowBox[List["7", " ", "z"]], "]"]]]], "9216"]]], ")"]], " ", SuperscriptBox["q", "3"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["37", " ", RowBox[List["Cos", "[", "z", "]"]]]], "294912"]]], "-", FractionBox[RowBox[List["49", " ", RowBox[List["Cos", "[", RowBox[List["3", " ", "z"]], "]"]]]], "24576"], "+", FractionBox[RowBox[List["7", " ", RowBox[List["Cos", "[", RowBox[List["7", " ", "z"]], "]"]]]], "49152"], "+", FractionBox[RowBox[List["Cos", "[", RowBox[List["9", " ", "z"]], "]"]], "81920"]]], ")"]], " ", SuperscriptBox["q", "4"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["121", " ", RowBox[List["Cos", "[", "z", "]"]]]], "1769472"]]], "+", FractionBox[RowBox[List["317", " ", RowBox[List["Cos", "[", RowBox[List["3", " ", "z"]], "]"]]]], "786432"], "+", FractionBox[RowBox[List["205", " ", RowBox[List["Cos", "[", RowBox[List["5", " ", "z"]], "]"]]]], "1179648"], "-", FractionBox[RowBox[List["7", " ", RowBox[List["Cos", "[", RowBox[List["7", " ", "z"]], "]"]]]], "5898240"], "-", FractionBox[RowBox[List["Cos", "[", RowBox[List["9", " ", "z"]], "]"]], "409600"], "-", FractionBox[RowBox[List["11", " ", RowBox[List["Cos", "[", RowBox[List["11", " ", "z"]], "]"]]]], "88473600"]]], ")"]], " ", SuperscriptBox["q", "5"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["8105", " ", RowBox[List["Cos", "[", "z", "]"]]]], "339738624"], "+", FractionBox[RowBox[List["103", " ", RowBox[List["Cos", "[", RowBox[List["3", " ", "z"]], "]"]]]], "18874368"], "-", FractionBox[RowBox[List["731", " ", RowBox[List["Cos", "[", RowBox[List["5", " ", "z"]], "]"]]]], "18874368"], "-", FractionBox[RowBox[List["2653", " ", RowBox[List["Cos", "[", RowBox[List["7", " ", "z"]], "]"]]]], "471859200"], "+", FractionBox[RowBox[List["Cos", "[", RowBox[List["9", " ", "z"]], "]"]], "31457280"], "+", FractionBox[RowBox[List["11", " ", RowBox[List["Cos", "[", RowBox[List["11", " ", "z"]], "]"]]]], "424673280"], "+", FractionBox[RowBox[List["13", " ", RowBox[List["Cos", "[", RowBox[List["13", " ", "z"]], "]"]]]], "14863564800"]]], ")"]], " ", SuperscriptBox["q", "6"]]], "+", SuperscriptBox[RowBox[List["O", "[", "q", "]"]], "11"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29