Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SpheroidalQSPrime






Mathematica Notation

Traditional Notation









Mathieu and Spheroidal Functions > SpheroidalQSPrime[nu,mu,gamma,z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/11.13.13.0003.01









  


  










Input Form





(1 - g[z]^2) Derivative[2][w][z] + (-2 g[z] Derivative[1][g][z] + (-1 + g[z]^2) (Derivative[2][g][z]/Derivative[1][g][z])) Derivative[1][w][z] + (Derivative[1][g][z]^2 SpheroidalEigenvalue[\[Nu], \[Mu], \[Gamma]] + ((\[Mu] + \[Gamma] - \[Gamma] g[z]^2) (\[Mu] - \[Gamma] + \[Gamma] g[z]^2) Derivative[1][g][z]^2)/(-1 + g[z]^2)) w[z] == 0 /; w[z] == Subscript[c, 1] SpheroidalQSPrime[\[Nu], \[Mu], \[Gamma], g[z]] + Subscript[c, 2] SpheroidalPSPrime[\[Nu], \[Mu], \[Gamma], g[z]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]], ")"]], " ", FractionBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Gamma]", "-", RowBox[List["\[Gamma]", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Gamma]", "+", RowBox[List["\[Gamma]", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]]]]], ")"]], RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", " ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], RowBox[List["SpheroidalQSPrime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], RowBox[List["SpheroidalPSPrime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mi> g </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <msup> <mi> g </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> g </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#947; </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> &#956; </mi> <mo> - </mo> <mi> &#947; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#947; </mi> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mi> &#947; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <msup> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> + </mo> <mrow> <semantics> <mrow> <msub> <mi> &#955; </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> &#947; </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox[&quot;\[Lambda]&quot;, RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;(&quot;, TagBox[&quot;\[Gamma]&quot;, SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalEigenvalue[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <msup> <msub> <mi> QS </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubscriptBox[StyleBox[&quot;QS&quot;, &quot;IT&quot;], RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;g&quot;, &quot;(&quot;, &quot;z&quot;, &quot;)&quot;]], SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalQSPrime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <msup> <msub> <mi> PS </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubscriptBox[StyleBox[&quot;PS&quot;, &quot;IT&quot;], RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalPSPrime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalPSPrime, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalPSPrime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;g&quot;, &quot;(&quot;, &quot;z&quot;, &quot;)&quot;]], SpheroidalPSPrime, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalPSPrime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mtext> </mtext> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> g </ci> <ci> z </ci> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> &#947; </ci> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#947; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#947; </ci> </apply> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#956; </ci> <ci> &#947; </ci> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> SpheroidalEigenvalue </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> SpheroidalQSPrime </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> SpheroidalPSPrime </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "\[Gamma]_"]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Mu]_", "+", "\[Gamma]_", "-", RowBox[List["\[Gamma]_", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]_", "-", "\[Gamma]_", "+", RowBox[List["\[Gamma]_", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"]]]]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", RowBox[List["SpheroidalQSPrime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", RowBox[List["SpheroidalPSPrime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02