|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/11.15.06.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SpheroidalS2Prime[\[Nu], \[Mu], \[Gamma], z] \[Proportional]
SpheroidalS2Prime[\[Nu], \[Mu], \[Gamma], 0] -
(\[Gamma]^2 - \[Mu]^2 + SpheroidalEigenvalue[\[Nu], \[Mu], \[Gamma]])
SpheroidalS2[\[Nu], \[Mu], \[Gamma], 0] z -
(1/2) (-2 + \[Gamma]^2 - \[Mu]^2 + SpheroidalEigenvalue[\[Nu], \[Mu],
\[Gamma]]) SpheroidalS2Prime[\[Nu], \[Mu], \[Gamma], 0] z^2 +
(1/6) (\[Gamma]^4 - 2 \[Gamma]^2 (2 + \[Mu]^2) + \[Mu]^2 (8 + \[Mu]^2) +
2 (-3 + \[Gamma]^2 - \[Mu]^2) SpheroidalEigenvalue[\[Nu], \[Mu],
\[Gamma]] + SpheroidalEigenvalue[\[Nu], \[Mu], \[Gamma]]^2)
SpheroidalS2[\[Nu], \[Mu], \[Gamma], 0] z^3 + \[Ellipsis] /; (z -> 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["SpheroidalS2Prime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["SpheroidalS2Prime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Gamma]", "2"], "-", SuperscriptBox["\[Mu]", "2"], "+", RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]]]], ")"]], " ", RowBox[List["SpheroidalS2", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], "z"]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["\[Gamma]", "2"], "-", SuperscriptBox["\[Mu]", "2"], "+", RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]]]], ")"]], " ", RowBox[List["SpheroidalS2Prime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], SuperscriptBox["z", "2"]]], "+", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Gamma]", "4"], "-", RowBox[List["2", " ", SuperscriptBox["\[Gamma]", "2"], " ", RowBox[List["(", RowBox[List["2", "+", SuperscriptBox["\[Mu]", "2"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[Mu]", "2"], " ", RowBox[List["(", RowBox[List["8", "+", SuperscriptBox["\[Mu]", "2"]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", SuperscriptBox["\[Gamma]", "2"], "-", SuperscriptBox["\[Mu]", "2"]]], ")"]], " ", RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]]]], "+", SuperscriptBox[RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]], "2"]]], ")"]], " ", RowBox[List["SpheroidalS2", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], SuperscriptBox["z", "3"]]], " ", "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <msup> <msubsup> <mi> S </mi> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mi> γ </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubsuperscriptBox["S", RowBox[List[TagBox["\[Nu]", SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["\[Mu]", SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]]]], RowBox[List["(", "2", ")"]]], "\[Prime]"], "(", RowBox[List[TagBox["\[Gamma]", SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["z", SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]]]], ")"]], InterpretTemplate[Function[SpheroidalS2Prime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ∝ </mo> <mrow> <semantics> <mrow> <msup> <msubsup> <mi> S </mi> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mi> γ </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubsuperscriptBox["S", RowBox[List[TagBox["\[Nu]", SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["\[Mu]", SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]]]], RowBox[List["(", "2", ")"]]], "\[Prime]"], "(", RowBox[List[TagBox["\[Gamma]", SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["0", SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]]]], ")"]], InterpretTemplate[Function[SpheroidalS2Prime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> γ </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> μ </mi> <mn> 2 </mn> </msup> <mo> + </mo> <semantics> <mrow> <msub> <mi> λ </mi> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> </msub> <mo> ( </mo> <mi> γ </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox["\[Lambda]", RowBox[List[TagBox["\[Nu]", SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["\[Mu]", SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]]]]], "(", TagBox["\[Gamma]", SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], ")"]], InterpretTemplate[Function[SpheroidalEigenvalue[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> S </mi> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> γ </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox["S", RowBox[List[TagBox["\[Nu]", SpheroidalS2, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["\[Mu]", SpheroidalS2, Rule[Editable, True], Rule[Selectable, True]]]], RowBox[List["(", "2", ")"]]], "(", RowBox[List[TagBox["\[Gamma]", SpheroidalS2, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["0", SpheroidalS2, Rule[Editable, True], Rule[Selectable, True]]]], ")"]], InterpretTemplate[Function[SpheroidalS2[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> γ </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> μ </mi> <mn> 2 </mn> </msup> <mo> + </mo> <semantics> <mrow> <msub> <mi> λ </mi> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> </msub> <mo> ( </mo> <mi> γ </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox["\[Lambda]", RowBox[List[TagBox["\[Nu]", SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["\[Mu]", SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]]]]], "(", TagBox["\[Gamma]", SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], ")"]], InterpretTemplate[Function[SpheroidalEigenvalue[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <msup> <msubsup> <mi> S </mi> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mi> γ </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubsuperscriptBox["S", RowBox[List[TagBox["\[Nu]", SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["\[Mu]", SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]]]], RowBox[List["(", "2", ")"]]], "\[Prime]"], "(", RowBox[List[TagBox["\[Gamma]", SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["0", SpheroidalS2Prime, Rule[Editable, True], Rule[Selectable, True]]]], ")"]], InterpretTemplate[Function[SpheroidalS2Prime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> γ </mi> <mn> 4 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> μ </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> γ </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <semantics> <mrow> <msub> <mi> λ </mi> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> </msub> <mo> ( </mo> <mi> γ </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox["\[Lambda]", RowBox[List[TagBox["\[Nu]", SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["\[Mu]", SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]]]]], "(", TagBox["\[Gamma]", SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], ")"]], InterpretTemplate[Function[SpheroidalEigenvalue[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msup> <mi> μ </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> μ </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> γ </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> μ </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <msub> <mi> λ </mi> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> </msub> <mo> ( </mo> <mi> γ </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox["\[Lambda]", RowBox[List[TagBox["\[Nu]", SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["\[Mu]", SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]]]]], "(", TagBox["\[Gamma]", SpheroidalEigenvalue, Rule[Editable, True], Rule[Selectable, True]], ")"]], InterpretTemplate[Function[SpheroidalEigenvalue[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> S </mi> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> γ </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox["S", RowBox[List[TagBox["\[Nu]", SpheroidalS2, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["\[Mu]", SpheroidalS2, Rule[Editable, True], Rule[Selectable, True]]]], RowBox[List["(", "2", ")"]]], "(", RowBox[List[TagBox["\[Gamma]", SpheroidalS2, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["0", SpheroidalS2, Rule[Editable, True], Rule[Selectable, True]]]], ")"]], InterpretTemplate[Function[SpheroidalS2[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mo> … </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> SpheroidalS2Prime </ci> <ci> ν </ci> <ci> μ </ci> <ci> γ </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> SpheroidalS2Prime </ci> <ci> ν </ci> <ci> μ </ci> <ci> γ </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> γ </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> μ </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> SpheroidalEigenvalue </ci> <ci> ν </ci> <ci> μ </ci> <ci> γ </ci> </apply> </apply> <apply> <ci> SpheroidalS2 </ci> <ci> ν </ci> <ci> μ </ci> <ci> γ </ci> <cn type='integer'> 0 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <power /> <ci> γ </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> μ </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> SpheroidalEigenvalue </ci> <ci> ν </ci> <ci> μ </ci> <ci> γ </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <ci> SpheroidalS2Prime </ci> <ci> ν </ci> <ci> μ </ci> <ci> γ </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <plus /> <apply> <power /> <ci> γ </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> μ </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> γ </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> SpheroidalEigenvalue </ci> <ci> ν </ci> <ci> μ </ci> <ci> γ </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <power /> <ci> μ </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> μ </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> γ </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> μ </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <ci> SpheroidalEigenvalue </ci> <ci> ν </ci> <ci> μ </ci> <ci> γ </ci> </apply> </apply> </apply> <apply> <ci> SpheroidalS2 </ci> <ci> ν </ci> <ci> μ </ci> <ci> γ </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SpheroidalS2Prime", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "\[Gamma]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["SpheroidalS2Prime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Gamma]", "2"], "-", SuperscriptBox["\[Mu]", "2"], "+", RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]]]], ")"]], " ", RowBox[List["SpheroidalS2", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], " ", "z"]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["\[Gamma]", "2"], "-", SuperscriptBox["\[Mu]", "2"], "+", RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]]]], ")"]], " ", RowBox[List["SpheroidalS2Prime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Gamma]", "4"], "-", RowBox[List["2", " ", SuperscriptBox["\[Gamma]", "2"], " ", RowBox[List["(", RowBox[List["2", "+", SuperscriptBox["\[Mu]", "2"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[Mu]", "2"], " ", RowBox[List["(", RowBox[List["8", "+", SuperscriptBox["\[Mu]", "2"]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", SuperscriptBox["\[Gamma]", "2"], "-", SuperscriptBox["\[Mu]", "2"]]], ")"]], " ", RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]]]], "+", SuperscriptBox[RowBox[List["SpheroidalEigenvalue", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]"]], "]"]], "2"]]], ")"]], " ", RowBox[List["SpheroidalS2", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "0"]], "]"]], " ", SuperscriptBox["z", "3"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|