|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.05.08.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DivisorSigma[k, n] == Product[(Subscript[p, j]^((Subscript[n, j] + 1) k) - 1)/
(Subscript[p, j]^k - 1), {j, 1, m}] /;
n == Product[Subscript[p, j]^Subscript[n, j], {j, 1, m}] &&
Element[Subscript[p, j], Primes] && Element[Subscript[n, j], Integers] &&
Subscript[n, j] > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["DivisorSigma", "[", RowBox[List["k", ",", "n"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], FractionBox[RowBox[List[SubsuperscriptBox["p", "j", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["n", "j"], "+", "1"]], ")"]], "k"]]], "-", "1"]], RowBox[List[SubsuperscriptBox["p", "j", "k"], "-", "1"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], SubsuperscriptBox["p", "j", SubscriptBox["n", "j"]]]]]], "\[And]", RowBox[List[SubscriptBox["p", "j"], "\[Element]", "Primes"]], "\[And]", RowBox[List[SubscriptBox["n", "j"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "j"], ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> σ </mi> <annotation encoding='Mathematica'> TagBox["\[Sigma]", DivisorSigma] </annotation> </semantics> <mi> k </mi> </msub> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mfrac> <mrow> <msubsup> <mi> p </mi> <mi> j </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> n </mi> <mi> j </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msubsup> <mi> p </mi> <mi> j </mi> <mi> k </mi> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <msubsup> <mi> p </mi> <mi> j </mi> <msub> <mi> n </mi> <mi> j </mi> </msub> </msubsup> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> ∈ </mo> <semantics> <mi> ℙ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalP]", Function[Primes]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> n </mi> <mi> j </mi> </msub> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> DivisorSigma </ci> <ci> k </ci> <ci> n </ci> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <ci> n </ci> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> j </ci> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <primes /> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> j </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["DivisorSigma", "[", RowBox[List["k", ",", "n_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], FractionBox[RowBox[List[SubsuperscriptBox["p", "j", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["n", "j"], "+", "1"]], ")"]], " ", "k"]]], "-", "1"]], RowBox[List[SubsuperscriptBox["p", "j", "k"], "-", "1"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], SubsuperscriptBox["p", "j", SubscriptBox["n", "j"]]]]]], "&&", RowBox[List[SubscriptBox["p", "j"], "\[Element]", "Primes"]], "&&", RowBox[List[SubscriptBox["n", "j"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["n", "j"], ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|