Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











DivisorSigma






Mathematica Notation

Traditional Notation









Number Theory Functions > DivisorSigma[k,n] > Summation > Asymptotic finite summation





http://functions.wolfram.com/13.05.23.0011.01









  


  










Input Form





Sum[DivisorSigma[k, j]^2, {j, 1, n}] \[Proportional] ((Zeta[2 k + 1] Zeta[k + 1]^2)/((2 k + 1) Zeta[2 k + 2])) n^(2 k + 1) + O[n^(2 k)] /; (n -> Infinity) && Element[k, Integers] && k >= 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "n"], SuperscriptBox[RowBox[List["DivisorSigma", "[", RowBox[List["k", ",", "j"]], "]"]], "2"]]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Zeta", "[", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], "]"]], SuperscriptBox[RowBox[List["Zeta", "[", RowBox[List["k", "+", "1"]], "]"]], "2"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], ")"]], RowBox[List["Zeta", "[", RowBox[List[RowBox[List["2", "k"]], "+", "2"]], "]"]]]]], SuperscriptBox["n", RowBox[List[RowBox[List["2", "k"]], "+", "1"]]]]], "+", RowBox[List["O", "[", SuperscriptBox["n", RowBox[List["2", "k"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <msup> <mrow> <msub> <semantics> <mi> &#963; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Sigma]&quot;, DivisorSigma] </annotation> </semantics> <mi> k </mi> </msub> <mo> ( </mo> <mi> j </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mfrac> <mrow> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, &quot;1&quot;]], Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;1&quot;]], Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, &quot;2&quot;]], Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> n </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> n </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <power /> <apply> <ci> DivisorSigma </ci> <ci> k </ci> <ci> j </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> n </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> n </ci> <infinity /> </apply> <apply> <in /> <ci> k </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "n_"], SuperscriptBox[RowBox[List["DivisorSigma", "[", RowBox[List["k", ",", "j"]], "]"]], "2"]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", RowBox[List["k", "+", "1"]], "]"]], "2"]]], ")"]], " ", SuperscriptBox["n", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["2", " ", "k"]], "+", "2"]], "]"]]]]], "+", SuperscriptBox[RowBox[List["O", "[", "n", "]"]], RowBox[List["2", " ", "k"]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02