|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.05.23.0016.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[Boole[Element[DivisorSigma[0, k]/p, Integers]],
{k, 1, x}] \[Proportional] (1 - Zeta[p]/Zeta[p - 1]) x +
O[x^(1/(p - 1))] /; (x -> Infinity) && Element[p, Primes]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "x"], RowBox[List["Boole", "[", RowBox[List[FractionBox[RowBox[List["DivisorSigma", "[", RowBox[List["0", ",", " ", "k"]], "]"]], "p"], "\[Element]", "Integers"]], "]"]]]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["Zeta", "[", "p", "]"]], RowBox[List["Zeta", "[", RowBox[List["p", "-", "1"]], "]"]]]]], ")"]], "x"]], "+", RowBox[List["O", "[", SuperscriptBox["x", FractionBox["1", RowBox[List["p", "-", "1"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["x", "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["p", "\[Element]", "Primes"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> x </mi> </munderover> <mrow> <mi> boole </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <msub> <semantics> <mi> σ </mi> <annotation encoding='Mathematica'> TagBox["\[Sigma]", DivisorSigma] </annotation> </semantics> <mn> 0 </mn> </msub> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <mi> p </mi> </mfrac> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mi> x </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> p </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["p", Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List["p", "-", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mi> x </mi> <mfrac> <mn> 1 </mn> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> p </mi> <mo> ∈ </mo> <mi> ℙ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> x </ci> </uplimit> <apply> <ci> boole </ci> <apply> <in /> <apply> <times /> <apply> <ci> DivisorSigma </ci> <cn type='integer'> 0 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> ℕ </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> x </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Zeta </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> x </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> x </ci> <infinity /> </apply> <apply> <in /> <ci> p </ci> <ci> ℙ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "x_"], RowBox[List["Boole", "[", RowBox[List[FractionBox[RowBox[List["DivisorSigma", "[", RowBox[List["0", ",", "k"]], "]"]], "p_"], "\[Element]", "Integers"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["Zeta", "[", "p", "]"]], RowBox[List["Zeta", "[", RowBox[List["p", "-", "1"]], "]"]]]]], ")"]], " ", "x"]], "+", SuperscriptBox[RowBox[List["O", "[", "x", "]"]], FractionBox["1", RowBox[List["p", "-", "1"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["x", "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["p", "\[Element]", "Primes"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|