|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.05.29.0013.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DivisorSigma[0, n^2] >= DivisorSigma[0, n] (3/2)^m /;
n >= 2 && n == Product[Subscript[p, k]^Subscript[n, k], {k, 1, m}] &&
Element[Subscript[p, k], Primes] && Element[Subscript[n, k], Integers] &&
Subscript[n, k] > 0 && Subscript[p, k] < Subscript[p, k + 1] &&
1 <= k <= m - 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["DivisorSigma", "[", RowBox[List["0", ",", SuperscriptBox["n", "2"]]], "]"]], "\[GreaterEqual]", RowBox[List[RowBox[List["DivisorSigma", "[", RowBox[List["0", ",", "n"]], "]"]], SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "m"]]]]], "/;", RowBox[List[RowBox[List["n", "\[GreaterEqual]", "2"]], "\[And]", RowBox[List["n", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "m"], SubsuperscriptBox["p", "k", SubscriptBox["n", "k"]]]]]], "\[And]", RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]], "\[And]", RowBox[List[SubscriptBox["n", "k"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "k"], ">", "0"]], "\[And]", RowBox[List[SubscriptBox["p", "k"], "<", SubscriptBox["p", RowBox[List["k", "+", "1"]]]]], "\[And]", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", RowBox[List["m", "-", "1"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> σ </mi> <annotation encoding='Mathematica'> TagBox["\[Sigma]", DivisorSigma] </annotation> </semantics> <mn> 0 </mn> </msub> <mo> ( </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mo> ≥ </mo> <mrow> <mrow> <msub> <semantics> <mi> σ </mi> <annotation encoding='Mathematica'> TagBox["\[Sigma]", DivisorSigma] </annotation> </semantics> <mn> 0 </mn> </msub> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> m </mi> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ≥ </mo> <mn> 2 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <msubsup> <mi> p </mi> <mi> k </mi> <msub> <mi> n </mi> <mi> k </mi> </msub> </msubsup> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> p </mi> <mi> k </mi> </msub> <mo> ∈ </mo> <semantics> <mi> ℙ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalP]", Function[Primes]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> n </mi> <mi> k </mi> </msub> <mo> ∈ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> p </mi> <mi> k </mi> </msub> <mo> < </mo> <msub> <mi> p </mi> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> ≤ </mo> <mi> k </mi> <mo> ≤ </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <geq /> <apply> <ci> DivisorSigma </ci> <cn type='integer'> 0 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> DivisorSigma </ci> <cn type='integer'> 0 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <and /> <apply> <geq /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <eq /> <ci> n </ci> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <primes /> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> k </ci> </apply> <integers /> </apply> <apply> <lt /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <leq /> <cn type='integer'> 1 </cn> <ci> k </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["DivisorSigma", "[", RowBox[List["0", ",", SuperscriptBox["n", "2"]]], "]"]], "\[GreaterEqual]", RowBox[List[RowBox[List["DivisorSigma", "[", RowBox[List["0", ",", "n"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "m"]]]]], "/;", RowBox[List[RowBox[List["n", "\[GreaterEqual]", "2"]], "&&", RowBox[List["n", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "m"], SubsuperscriptBox["p", "k", SubscriptBox["n", "k"]]]]]], "&&", RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]], "&&", RowBox[List[SubscriptBox["n", "k"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["n", "k"], ">", "0"]], "&&", RowBox[List[SubscriptBox["p", "k"], "<", SubscriptBox["p", RowBox[List["k", "+", "1"]]]]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", RowBox[List["m", "-", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|