|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.02.27.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Divisors[n] == {1, \[Ellipsis], Subscript[p, Subscript[k, 1]]^
Subscript[n, Subscript[k, 1]], \[Ellipsis], Subscript[p, Subscript[k, h]]^
Subscript[n, Subscript[k, h]], \[Ellipsis], n} /;
FactorInteger[n] == {{Subscript[p, 1], Subscript[n, 1]},
{Subscript[p, 2], Subscript[n, 2]}, \[Ellipsis],
{Subscript[p, m], Subscript[n, m]}} && Element[Subscript[p, k],
Primes] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Divisors", "[", "n", "]"]], "\[Equal]", RowBox[List["{", RowBox[List["1", ",", "\[Ellipsis]", ",", SubsuperscriptBox["p", SubscriptBox["k", "1"], SubscriptBox["n", SubscriptBox["k", "1"]]], ",", "\[Ellipsis]", ",", " ", SubsuperscriptBox["p", SubscriptBox["k", "h"], SubscriptBox["n", SubscriptBox["k", "h"]]], ",", "\[Ellipsis]", ",", "n"]], "}"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["FactorInteger", "[", "n", "]"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["p", "1"], ",", SubscriptBox["n", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["p", "2"], ",", SubscriptBox["n", "2"]]], "}"]], ",", "\[Ellipsis]", ",", RowBox[List["{", RowBox[List[SubscriptBox["p", "m"], ",", SubscriptBox["n", "m"]]], "}"]]]], "}"]]]], "\[And]", RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> divisors </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msubsup> <mi> p </mi> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <msub> <mi> n </mi> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </msub> </msubsup> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msubsup> <mi> p </mi> <msub> <mi> k </mi> <mi> h </mi> </msub> <msub> <mi> n </mi> <msub> <mi> k </mi> <mi> h </mi> </msub> </msub> </msubsup> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mi> n </mi> </mrow> <mo> } </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> factors </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> p </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> p </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> p </mi> <mi> m </mi> </msub> <mo> , </mo> <msub> <mi> n </mi> <mi> m </mi> </msub> </mrow> <mo> } </mo> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> p </mi> <mi> k </mi> </msub> <mo> ∈ </mo> <semantics> <mi> ℙ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalP]", Function[Primes]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> divisors </ci> <ci> n </ci> </apply> <list> <cn type='integer'> 1 </cn> <ci> … </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <ci> … </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> h </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> h </ci> </apply> </apply> </apply> <ci> … </ci> <ci> n </ci> </list> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> factors </ci> <ci> n </ci> </apply> <list> <list> <apply> <ci> Subscript </ci> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> … </ci> <list> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> m </ci> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> m </ci> </apply> </list> </list> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <primes /> </apply> <apply> <gt /> <ci> n </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Divisors", "[", "n_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "\[Ellipsis]", ",", SubsuperscriptBox["p", SubscriptBox["k", "1"], SubscriptBox["n", SubscriptBox["k", "1"]]], ",", "\[Ellipsis]", ",", SubsuperscriptBox["p", SubscriptBox["k", "h"], SubscriptBox["n", SubscriptBox["k", "h"]]], ",", "\[Ellipsis]", ",", "n"]], "}"]], "/;", RowBox[List[RowBox[List[RowBox[List["FactorInteger", "[", "n", "]"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["p", "1"], ",", SubscriptBox["n", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["p", "2"], ",", SubscriptBox["n", "2"]]], "}"]], ",", "\[Ellipsis]", ",", RowBox[List["{", RowBox[List[SubscriptBox["p", "m"], ",", SubscriptBox["n", "m"]]], "}"]]]], "}"]]]], "&&", RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|