|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.06.17.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EulerPhi[n] == (n/c[n]) EulerPhi[c[n]] /;
c[n] == DivisorSum[Abs[MoebiusMu[d]] EulerPhi[d], {d, n}] ==
Product[Prime[k], {k, 1, r}] &&
n == Product[Subscript[p, k]^Subscript[n, k], {k, 1, r}] &&
Element[Subscript[p, k], Primes] && Element[Subscript[n, k], Integers] &&
Subscript[n, k] > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EulerPhi", "[", "n", "]"]], "\[Equal]", RowBox[List[FractionBox["n", RowBox[List["c", "[", "n", "]"]]], " ", RowBox[List["EulerPhi", "[", RowBox[List["c", "[", "n", "]"]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["c", "[", "n", "]"]], "\[Equal]", RowBox[List["DivisorSum", "[", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["MoebiusMu", "[", "d", "]"]], "]"]], " ", RowBox[List["EulerPhi", "[", "d", "]"]]]], ",", RowBox[List["{", RowBox[List["d", ",", "n"]], "}"]]]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "r"], RowBox[List["Prime", "[", "k", "]"]]]]]], "\[And]", RowBox[List["n", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "r"], SubsuperscriptBox["p", "k", SubscriptBox["n", "k"]]]]]], "\[And]", RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]], "\[And]", RowBox[List[SubscriptBox["n", "k"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "k"], ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", EulerPhi] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mi> n </mi> <mrow> <mi> c </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", EulerPhi] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> c </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <munder> <mo> ∑ </mo> <mrow> <msub> <mi> d </mi> <mi> j </mi> </msub> <mo> | </mo> <mi> n </mi> </mrow> </munder> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <semantics> <mi> μ </mi> <annotation encoding='Mathematica'> TagBox["\[Mu]", MoebiusMu] </annotation> </semantics> <mo> ( </mo> <msub> <mi> d </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", EulerPhi] </annotation> </semantics> <mo> ( </mo> <msub> <mi> d </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> r </mi> </munderover> <msubsup> <mi> p </mi> <mi> k </mi> <msub> <mi> n </mi> <mi> k </mi> </msub> </msubsup> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> p </mi> <mi> k </mi> </msub> <mo> ∈ </mo> <semantics> <mi> ℙ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalP]", Function[Primes]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> n </mi> <mi> k </mi> </msub> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> ϕ </ms> <ci> EulerPhi </ci> </apply> <ms> ( </ms> <ms> n </ms> <ms> ) </ms> </list> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> n </ms> <apply> <ci> RowBox </ci> <list> <ms> c </ms> <ms> ( </ms> <ms> n </ms> <ms> ) </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> ϕ </ms> <ci> EulerPhi </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> c </ms> <ms> ( </ms> <ms> n </ms> <ms> ) </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> c </ms> <ms> ( </ms> <ms> n </ms> <ms> ) </ms> </list> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderscriptBox </ci> <apply> <ci> ErrorBox </ci> <ms> ∑ </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> <ms> | </ms> <ms> n </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms>  </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> μ </ms> <ci> MoebiusMu </ci> </apply> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> <ms> ) </ms> </list> </apply> <ms>  </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> ϕ </ms> <ci> EulerPhi </ci> </apply> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∏ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> r </ms> </apply> <apply> <ci> SubsuperscriptBox </ci> <ms> p </ms> <ms> k </ms> <apply> <ci> SubscriptBox </ci> <ms> n </ms> <ms> k </ms> </apply> </apply> </list> </apply> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> p </ms> <ms> k </ms> </apply> <ms> ∈ </ms> <apply> <ci> TagBox </ci> <ms> ℙ </ms> <apply> <ci> Function </ci> <primes /> </apply> </apply> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> n </ms> <ms> k </ms> </apply> <ms> ∈ </ms> <apply> <ci> SuperscriptBox </ci> <ms> ℕ </ms> <ms> + </ms> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EulerPhi", "[", "n_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["n", " ", RowBox[List["EulerPhi", "[", RowBox[List["c", "[", "n", "]"]], "]"]]]], RowBox[List["c", "[", "n", "]"]]], "/;", RowBox[List[RowBox[List[RowBox[List["c", "[", "n", "]"]], "\[Equal]", RowBox[List["DivisorSum", "[", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["MoebiusMu", "[", "d", "]"]], "]"]], " ", RowBox[List["EulerPhi", "[", "d", "]"]]]], ",", RowBox[List["{", RowBox[List["d", ",", "n"]], "}"]]]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "r"], RowBox[List["Prime", "[", "k", "]"]]]]]], "&&", RowBox[List["n", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "r"], SubsuperscriptBox["p", "k", SubscriptBox["n", "k"]]]]]], "&&", RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]], "&&", RowBox[List[SubscriptBox["n", "k"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["n", "k"], ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|