|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.07.02.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MoebiusMu[n] == (-1)^k /; (n = Product[Subscript[p, j], {j, 1, k}] &&
Element[Subscript[p, j], Primes] && Subscript[p, j] != Subscript[p, i])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MoebiusMu", "[", "n", "]"]], "\[Equal]", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], "/;", RowBox[List["(", RowBox[List["n", "=", RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "k"], SubscriptBox["p", "j"]]], "\[And]", RowBox[List[SubscriptBox["p", "j"], "\[Element]", "Primes"]], "\[And]", RowBox[List[SubscriptBox["p", "j"], "\[NotEqual]", SubscriptBox["p", "i"]]]]]]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <semantics> <mi> μ </mi> <annotation encoding='Mathematica'> TagBox["\[Mu]", MoebiusMu] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mo> /; </mo> <mi> n </mi> </mrow> <mo> = </mo> <mrow> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <msub> <mi> p </mi> <mi> j </mi> </msub> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> ∈ </mo> <semantics> <mi> ℙ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalP]", Function[Primes]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> ≠ </mo> <msub> <mi> p </mi> <mi> i </mi> </msub> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Set </ci> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> MoebiusMu </ci> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <ci> n </ci> </apply> <apply> <and /> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <primes /> </apply> <apply> <neq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> i </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MoebiusMu", "[", "n_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], "/;", RowBox[List["(", RowBox[List["n", "=", RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "k"], SubscriptBox["p", "j"]]], "&&", RowBox[List[SubscriptBox["p", "j"], "\[Element]", "Primes"]], "&&", RowBox[List[SubscriptBox["p", "j"], "\[NotEqual]", SubscriptBox["p", "i"]]]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|