|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.07.23.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[MoebiusMu[k n] k^s, {k, 1, Infinity}] ==
MoebiusMu[n]/(n^s (Zeta[-s] (n^(-s) - 1)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["MoebiusMu", "[", RowBox[List["k", " ", "n"]], "]"]], " ", SuperscriptBox["k", "s"]]]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["MoebiusMu", "[", "n", "]"]], " ", SuperscriptBox["n", RowBox[List["-", "s"]]]]], RowBox[List[RowBox[List["Zeta", "[", RowBox[List["-", "s"]], "]"]], RowBox[List["(", RowBox[List[SuperscriptBox["n", RowBox[List["-", "s"]]], "-", "1"]], ")"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <semantics> <mi> μ </mi> <annotation encoding='Mathematica'> TagBox["\[Mu]", MoebiusMu] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> k </mi> <mi> s </mi> </msup> </mrow> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <mrow> <semantics> <mi> μ </mi> <annotation encoding='Mathematica'> TagBox["\[Mu]", MoebiusMu] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> n </mi> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List["-", "s"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> n </mi> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> MoebiusMu </ci> <apply> <times /> <ci> k </ci> <ci> n </ci> </apply> </apply> <apply> <power /> <ci> k </ci> <ci> s </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> MoebiusMu </ci> <ci> n </ci> </apply> <apply> <power /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Zeta </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["MoebiusMu", "[", RowBox[List["k", " ", "n_"]], "]"]], " ", SuperscriptBox["k", "s_"]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["MoebiusMu", "[", "n", "]"]], " ", SuperscriptBox["n", RowBox[List["-", "s"]]]]], RowBox[List[RowBox[List["Zeta", "[", RowBox[List["-", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["n", RowBox[List["-", "s"]]], "-", "1"]], ")"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|