|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.07.24.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Product[k^(-(MoebiusMu[k]/k)), {k, 1, Infinity}] == E
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], SuperscriptBox["k", RowBox[List["-", FractionBox[RowBox[List["MoebiusMu", "[", "k", "]"]], "k"]]]]]], "\[Equal]", "\[ExponentialE]"]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <msup> <mi> k </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <semantics> <mi> μ </mi> <annotation encoding='Mathematica'> TagBox["\[Mu]", MoebiusMu] </annotation> </semantics> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <mi> k </mi> </mfrac> </mrow> </msup> </mrow> <mo> ⩵ </mo> <mi> ⅇ </mi> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <power /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> MoebiusMu </ci> <ci> k </ci> </apply> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <exponentiale /> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], SuperscriptBox["k", RowBox[List["-", FractionBox[RowBox[List["MoebiusMu", "[", "k", "]"]], "k"]]]]]], "]"]], "\[RuleDelayed]", "\[ExponentialE]"]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|