|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.07.24.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Product[(1 - q^k)^(DivisorSum[MoebiusMu[Subscript[d, j]]
r^(k/Subscript[d, j]), {Subscript[d, j], k}]/k), {k, 1, Infinity}] ==
1 - r q /; Element[r, Integers] && r >= 0 && Element[Subscript[d, j],
Divisors[k]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", "k"]]], ")"]], FractionBox[RowBox[List["DivisorSum", "[", RowBox[List[RowBox[List[RowBox[List["MoebiusMu", "[", SubscriptBox["d", "j"], "]"]], " ", SuperscriptBox["r", RowBox[List["k", "/", SubscriptBox["d", "j"]]]]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["d", "j"], ",", "k"]], "}"]]]], "]"]], "k"]]]], "\[Equal]", RowBox[List["1", "-", RowBox[List["r", " ", "q"]]]]]], "/;", RowBox[List[RowBox[List["r", "\[Element]", "Integers"]], "\[And]", RowBox[List["r", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[SubscriptBox["d", "j"], "\[Element]", RowBox[List["Divisors", "[", "k", "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> q </mi> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <munder> <mo> ∑ </mo> <mrow> <mi> d </mi> <mo> | </mo> <mi> k </mi> </mrow> </munder> <mrow> <mrow> <semantics> <mi> μ </mi> <annotation encoding='Mathematica'> TagBox["\[Mu]", MoebiusMu] </annotation> </semantics> <mo> ( </mo> <msub> <mi> d </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> r </mi> <mfrac> <mi> k </mi> <msub> <mi> d </mi> <mi> j </mi> </msub> </mfrac> </msup> </mrow> </mrow> <mi> k </mi> </mfrac> </msup> </mrow> <mo> ⩵ </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> r </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> r </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> d </mi> <mi> j </mi> </msub> <mo> ∈ </mo> <mrow> <mi> divisors </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∏ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> ∞ </ms> </apply> <apply> <ci> ErrorBox </ci> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> SuperscriptBox </ci> <ms> q </ms> <ms> k </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> d </ms> <ms> | </ms> <ms> k </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> μ </ms> <ci> MoebiusMu </ci> </apply> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <ms> r </ms> <apply> <ci> FractionBox </ci> <ms> k </ms> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> </apply> </apply> </list> </apply> </list> </apply> <ms> k </ms> </apply> </apply> </apply> </list> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> r </ms> <ms> q </ms> </list> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> r </ms> <ms> ∈ </ms> <ms> ℕ </ms> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> <ms> ∈ </ms> <apply> <ci> RowBox </ci> <list> <ms> divisors </ms> <ms> ( </ms> <ms> k </ms> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q_", "k"]]], ")"]], FractionBox[RowBox[List["DivisorSum", "[", RowBox[List[RowBox[List[RowBox[List["MoebiusMu", "[", SubscriptBox["d_", "j"], "]"]], " ", SuperscriptBox["r_", FractionBox["k", SubscriptBox["d_", "j"]]]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["d_", "j"], ",", "k"]], "}"]]]], "]"]], "k"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["1", "-", RowBox[List["r", " ", "q"]]]], "/;", RowBox[List[RowBox[List["r", "\[Element]", "Integers"]], "&&", RowBox[List["r", "\[GreaterEqual]", "0"]], "&&", RowBox[List[SubscriptBox["d", "j"], "\[Element]", RowBox[List["Divisors", "[", "k", "]"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| S.‐.J. Kang, M.‐H. Kim, "Free Lie Algebras, Generalized Witt Formula, and the Denominator Identity", Journal of Algebra, v. 183, pp. 560-594 (1996) |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|