|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.03.06.0005.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prime[n] ==
Floor[1 - (1/Log[2]) Log[(-(1/2)) DivisorSum[MoebiusMu[Subscript[d, j]]/
(2^d - 1), {Subscript[d, j], Product[Subscript[p, k],
{k, 1, n - 1}]}]]] /; Element[Subscript[p, k], Primes]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List[RowBox[List["Prime", "[", "n", "]"]], "\[Equal]", RowBox[List["Floor", "[", RowBox[List["1", "-", RowBox[List[FractionBox["1", RowBox[List["Log", "[", "2", "]"]]], RowBox[List["Log", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["DivisorSum", "[", RowBox[List[FractionBox[RowBox[List["MoebiusMu", "[", SubscriptBox["d", "j"], "]"]], RowBox[List[SuperscriptBox["2", "d"], "-", "1"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["d", "j"], ",", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["n", "-", "1"]]], SubscriptBox["p", "k"]]]]], "}"]]]], "]"]]]], "]"]]]]]], "]"]]]], "/;", RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> prime </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> ⌊ </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <munder> <mo> ∑ </mo> <mrow> <msub> <mi> d </mi> <mi> j </mi> </msub> <mo> ∣ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <msub> <mi> p </mi> <mi> k </mi> </msub> </mrow> </mrow> </munder> <mfrac> <mrow> <semantics> <mi> μ </mi> <annotation encoding='Mathematica'> TagBox["\[Mu]", MoebiusMu] </annotation> </semantics> <mo> ( </mo> <msub> <mi> d </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mrow> <msup> <mn> 2 </mn> <msub> <mi> d </mi> <mi> j </mi> </msub> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⌋ </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <msub> <mi> p </mi> <mi> k </mi> </msub> <mo> ∈ </mo> <semantics> <mi> ℙ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalP]", Function[Primes]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> prime </ms> <ms> ( </ms> <ms> n </ms> <ms> ) </ms> </list> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <ms> ⌊ </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <ms> 2 </ms> <ms> ) </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ln /> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderscriptBox </ci> <apply> <ci> ErrorBox </ci> <ms> ∑ </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> <ms> ∣ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∏ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> SubscriptBox </ci> <ms> p </ms> <ms> k </ms> </apply> </list> </apply> </list> </apply> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> μ </ms> <ci> MoebiusMu </ci> </apply> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> 2 </ms> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> </apply> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> </list> </apply> </list> </apply> <ms> ] </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ⌋ </ms> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> p </ms> <ms> k </ms> </apply> <ms> ∈ </ms> <apply> <ci> TagBox </ci> <ms> ℙ </ms> <apply> <ci> Function </ci> <primes /> </apply> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Prime", "[", "n_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Floor", "[", RowBox[List["1", "-", FractionBox[RowBox[List["Log", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["DivisorSum", "[", RowBox[List[FractionBox[RowBox[List["MoebiusMu", "[", SubscriptBox["d", "j"], "]"]], RowBox[List[SuperscriptBox["2", "d"], "-", "1"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["d", "j"], ",", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["n", "-", "1"]]], SubscriptBox["p", "k"]]]]], "}"]]]], "]"]]]], "]"]], RowBox[List["Log", "[", "2", "]"]]]]], "]"]], "/;", RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|