|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.03.06.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prime[n + 1] ==
Floor[
1 - Log[2, 1/2 + Sum[\[Ellipsis]
Sum[(-1)^r/(2^Product[Prime[Subscript[j, k]], {k, 1, r}] - 1),
{Subscript[j, 1], 1, Subscript[j, 2]}], {r, 1, n},
{Subscript[j, r], Subscript[j, r - 1], n}]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Prime", "[", RowBox[List["n", "+", "1"]], "]"]], "\[Equal]", RowBox[List["Floor", "[", RowBox[List["1", "-", RowBox[List["Log", "[", RowBox[List["2", ",", RowBox[List[FractionBox["1", "2"], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["j", "r"], "=", SubscriptBox["j", RowBox[List["r", "-", "1"]]]]], "n"], RowBox[List["\[Ellipsis]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["j", "1"], "=", "1"]], SubscriptBox["j", "2"]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], RowBox[List[SuperscriptBox["2", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "r"], RowBox[List["Prime", "[", SubscriptBox["j", "k"], "]"]]]]], "-", "1"]]]]]]]]]]]]]]], "]"]]]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> prime </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> ⌊ </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msub> <mi> log </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> j </mi> <mi> r </mi> </msub> <mo> = </mo> <msub> <mi> j </mi> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mi> n </mi> </munderover> <mrow> <mo> … </mo> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> <mrow> <msup> <mn> 2 </mn> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> r </mi> </munderover> <mrow> <mi> prime </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> j </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⌋ </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> prime </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <floor /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <log /> <logbase> <cn type='integer'> 2 </cn> </logbase> <apply> <plus /> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> j </ci> <ci> r </ci> </apply> </bvar> <lowlimit> <apply> <ci> Subscript </ci> <ci> j </ci> <apply> <plus /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <ci> … </ci> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> r </ci> </uplimit> <apply> <ci> prime </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Prime", "[", RowBox[List["n_", "+", "1"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["Floor", "[", RowBox[List["1", "-", RowBox[List["Log", "[", RowBox[List["2", ",", RowBox[List[FractionBox["1", "2"], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["j", "r"], "=", SubscriptBox["j", RowBox[List["r", "-", "1"]]]]], "n"], RowBox[List["\[Ellipsis]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["j", "1"], "=", "1"]], SubscriptBox["j", "2"]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], RowBox[List[SuperscriptBox["2", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "r"], RowBox[List["Prime", "[", SubscriptBox["j", "k"], "]"]]]]], "-", "1"]]]]]]]]]]]]]]], "]"]]]], "]"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|