|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/13.03.24.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Product[(Subscript[p, k]^2 + 1)/(Subscript[p, k]^2 - 1), {k, 1, Infinity}] ==
5/2 /; Subscript[p, k] == Prime[k]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SubsuperscriptBox["p", "k", "2"], "+", "1"]], RowBox[List[SubsuperscriptBox["p", "k", "2"], "-", "1"]]]]], "\[Equal]", FractionBox["5", "2"]]], "/;", RowBox[List[SubscriptBox["p", "k"], "\[Equal]", RowBox[List["Prime", "[", "k", "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <msubsup> <mi> p </mi> <mi> k </mi> <mn> 2 </mn> </msubsup> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <msubsup> <mi> p </mi> <mi> k </mi> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ⩵ </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> /; </mo> <mrow> <msub> <mi> p </mi> <mi> k </mi> </msub> <mo> ⩵ </mo> <mrow> <mi> prime </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <apply> <ci> prime </ci> <ci> k </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SubsuperscriptBox["p_", "k", "2"], "+", "1"]], RowBox[List[SubsuperscriptBox["p_", "k", "2"], "-", "1"]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["5", "2"], "/;", RowBox[List[SubscriptBox["p", "k"], "\[Equal]", RowBox[List["Prime", "[", "k", "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|