|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.14.03.0024.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BernoulliB[9, z] == z^9 - (9 z^8)/2 + 6 z^7 - (21 z^5)/5 + 2 z^3 - (3 z)/10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List["9", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["z", "9"], "-", FractionBox[RowBox[List["9", " ", SuperscriptBox["z", "8"]]], "2"], "+", RowBox[List["6", " ", SuperscriptBox["z", "7"]]], "-", FractionBox[RowBox[List["21", " ", SuperscriptBox["z", "5"]]], "5"], "+", RowBox[List["2", " ", SuperscriptBox["z", "3"]]], "-", FractionBox[RowBox[List["3", " ", "z"]], "10"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mn> 9 </mn> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mi> z </mi> <mn> 9 </mn> </msup> <mo> - </mo> <mfrac> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mn> 5 </mn> </mfrac> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 10 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> BernoulliB </ci> <cn type='integer'> 9 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> <apply> <power /> <cn type='integer'> 10 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BernoulliB", "[", RowBox[List["9", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["z", "9"], "-", FractionBox[RowBox[List["9", " ", SuperscriptBox["z", "8"]]], "2"], "+", RowBox[List["6", " ", SuperscriptBox["z", "7"]]], "-", FractionBox[RowBox[List["21", " ", SuperscriptBox["z", "5"]]], "5"], "+", RowBox[List["2", " ", SuperscriptBox["z", "3"]]], "-", FractionBox[RowBox[List["3", " ", "z"]], "10"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|