|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.14.03.0025.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BernoulliB[10, z] == z^10 - 5 z^9 + (15 z^8)/2 - 7 z^6 + 5 z^4 - (3 z^2)/2 +
5/66
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List["10", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["z", "10"], "-", RowBox[List["5", " ", SuperscriptBox["z", "9"]]], "+", FractionBox[RowBox[List["15", " ", SuperscriptBox["z", "8"]]], "2"], "-", RowBox[List["7", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["5", " ", SuperscriptBox["z", "4"]]], "-", FractionBox[RowBox[List["3", " ", SuperscriptBox["z", "2"]]], "2"], "+", FractionBox["5", "66"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mn> 10 </mn> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mi> z </mi> <mn> 10 </mn> </msup> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 66 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> BernoulliB </ci> <cn type='integer'> 10 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 5 <sep /> 66 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BernoulliB", "[", RowBox[List["10", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["z", "10"], "-", RowBox[List["5", " ", SuperscriptBox["z", "9"]]], "+", FractionBox[RowBox[List["15", " ", SuperscriptBox["z", "8"]]], "2"], "-", RowBox[List["7", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["5", " ", SuperscriptBox["z", "4"]]], "-", FractionBox[RowBox[List["3", " ", SuperscriptBox["z", "2"]]], "2"], "+", FractionBox["5", "66"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|