|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.14.06.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BernoulliB[n, x] == (-(n!/(2 Pi I)^n)) Sum[If[k == 0, 0, E^(2 I k Pi x)/k^n],
{k, -Infinity, Infinity}] /; 0 < x < 1 && (Element[n, Integers] && n > 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List["n", ",", "x"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[" ", RowBox[List["n", "!"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]], ")"]], "n"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List["k", "\[Equal]", "0"]], ",", "0", ",", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "\[Pi]", " ", "x"]]], SuperscriptBox["k", "n"]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["0", "<", "x", "<", "1"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <munder> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> </mrow> <mrow> <mi> k </mi> <mo> ≠ </mo> <mn> 0 </mn> </mrow> </munder> <mi> ∞ </mi> </munderover> <mfrac> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> </msup> <msup> <mi> k </mi> <mi> n </mi> </msup> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mn> 0 </mn> <mo> < </mo> <mi> x </mi> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <apply> <ci> TagBox </ci> <ms> B </ms> <ci> BernoulliB </ci> </apply> <ms> n </ms> </apply> <ms> ( </ms> <ms> x </ms> <ms> ) </ms> </list> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> ! </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> π </ms> <ms> ⅈ </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> n </ms> </apply> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> UnderscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> ∞ </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> ≠ </ms> <ms> 0 </ms> </list> </apply> </apply> <ms> ∞ </ms> </apply> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> SuperscriptBox </ci> <ms> ⅇ </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> ⅈ </ms> <ms> k </ms> <ms> π </ms> <ms> x </ms> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <ms> k </ms> <ms> n </ms> </apply> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 0 </ms> <ms> < </ms> <ms> x </ms> <ms> < </ms> <ms> 1 </ms> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> ∈ </ms> <apply> <ci> SuperscriptBox </ci> <ms> ℕ </ms> <ms> + </ms> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BernoulliB", "[", RowBox[List["n_", ",", "x_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List["k", "\[Equal]", "0"]], ",", "0", ",", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "\[Pi]", " ", "x"]]], SuperscriptBox["k", "n"]]]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]], ")"]], "n"]]]], "/;", RowBox[List[RowBox[List["0", "<", "x", "<", "1"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|