Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
BernoulliB






Mathematica Notation

Traditional Notation









Polynomials > BernoulliB[n,z] > Complex characteristics > Signum value





http://functions.wolfram.com/05.14.19.0006.01









  


  










Input Form





Sign[BernoulliB[n, x + I y]] == (BernoulliB[n, x - x Sqrt[-(y^2/x^2)]] + (1/y) (I x Sqrt[-(y^2/x^2)] (BernoulliB[n, x - x Sqrt[-(y^2/x^2)]] - BernoulliB[n, x + x Sqrt[-(y^2/x^2)]])) + BernoulliB[n, x + x Sqrt[-(y^2/x^2)]])/ (2 Sqrt[BernoulliB[n, x - x Sqrt[-(y^2/x^2)]] BernoulliB[n, x + x Sqrt[-(y^2/x^2)]]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Sign", "[", RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]]]], "]"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "-", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]]]], "]"]], "+", RowBox[List[FractionBox["1", "y"], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "-", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]]]], "]"]], "-", RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "+", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]]]], "]"]]]], ")"]]]], ")"]]]], "+", RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "+", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "-", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]]]], "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "+", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]]]], "]"]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> sgn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mrow> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> + </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> y </mi> </mfrac> <mo> + </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> + </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mrow> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mrow> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> + </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Sign </ci> <apply> <ci> BernoulliB </ci> <ci> n </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ci> BernoulliB </ci> <ci> n </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> BernoulliB </ci> <ci> n </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> <ci> x </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <ci> n </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> <ci> x </ci> </apply> </apply> <apply> <ci> BernoulliB </ci> <ci> n </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <ci> BernoulliB </ci> <ci> n </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> BernoulliB </ci> <ci> n </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> <ci> x </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Sign", "[", RowBox[List["BernoulliB", "[", RowBox[List["n_", ",", RowBox[List["x_", "+", RowBox[List["\[ImaginaryI]", " ", "y_"]]]]]], "]"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "-", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]]]], "]"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "-", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]]]], "]"]], "-", RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "+", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]]]], "]"]]]], ")"]]]], "y"], "+", RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "+", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]]]], "]"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "-", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]]]], "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["x", "+", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]]]], "]"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02