|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.14.23.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[Binomial[n, k] BernoulliB[k, z] w^k, {k, 0, n}] ==
w^n BernoulliB[n, z + 1/w]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["k", ",", "z"]], "]"]], SuperscriptBox["w", "k"]]]]], "\[Equal]", RowBox[List[SuperscriptBox["w", "n"], RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["z", "+", FractionBox["1", "w"]]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mi> k </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> w </mi> <mi> k </mi> </msup> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mi> w </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> w </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <ci> BernoulliB </ci> <ci> k </ci> <ci> z </ci> </apply> <apply> <power /> <ci> w </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> w </ci> <ci> n </ci> </apply> <apply> <ci> BernoulliB </ci> <ci> n </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> w </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], "n_"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n_", ",", "k_"]], "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["k_", ",", "z_"]], "]"]], " ", SuperscriptBox["w_", "k_"]]]]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["w", "n"], " ", RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["z", "+", FractionBox["1", "w"]]]]], "]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|