|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.14.23.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[BernoulliB[n, z + k/(m + 1)], {k, 0, m}] ==
(m + 1)^(1 - n) BernoulliB[n, m z + m] /; Element[m, Integers] && m >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List["z", "+", FractionBox["k", RowBox[List["m", "+", "1"]]]]]]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]], RowBox[List["1", "-", "n"]]], RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List[RowBox[List["m", " ", "z"]], "+", "m"]]]], "]"]]]]]], "/;", " ", RowBox[List[RowBox[List["m", " ", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mi> k </mi> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <ci> BernoulliB </ci> <ci> n </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <ci> k </ci> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <ci> BernoulliB </ci> <ci> n </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], "m_"], RowBox[List["BernoulliB", "[", RowBox[List["n_", ",", RowBox[List["z_", "+", FractionBox["k_", RowBox[List["m_", "+", "1"]]]]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]], RowBox[List["1", "-", "n"]]], " ", RowBox[List["BernoulliB", "[", RowBox[List["n", ",", RowBox[List[RowBox[List["m", " ", "z"]], "+", "m"]]]], "]"]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|