|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.14.29.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 < (-1)^(n + 1) BernoulliB[2 n + 1, x] <
(2 (2 n + 1)!)/((2 Pi)^(2 n + 1) (1 - 2^(-2 n))) /;
Element[n, Integers] && n > 0 && 0 < x < 1/2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["0", "<", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", "1"]]], " ", RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ",", "x"]], "]"]]]], "<", FractionBox[RowBox[List["2", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], "!"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]]]], ")"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List["0", "<", "x", "<", FractionBox["1", "2"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mn> 0 </mn> <mo> < </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> < </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mn> 0 </mn> <mo> < </mo> <mi> x </mi> <mo> < </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <lt /> <cn type='integer'> 0 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> x </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["0", "<", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", "1"]]], " ", RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ",", "x"]], "]"]]]], "<", FractionBox[RowBox[List["2", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], "!"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]]]], ")"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List["0", "<", "x", "<", FractionBox["1", "2"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|