Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
ChebyshevT






Mathematica Notation

Traditional Notation









Polynomials > ChebyshevT[n,z] > Differentiation > Symbolic differentiation > With respect to z





http://functions.wolfram.com/05.04.20.0006.01









  


  










Input Form





BoxData[\(\(D[\(\(ChebyshevT[\(n, z\)]\), \({z, m}\)\)]\)  \(\(2^\((m - 1)\)\) * \(\((m - 1)\) !\)\ * n\ \(Sum[\(\(\(KroneckerDelta[\(\(Sum[\(\(Subscript[\(i, j\)]\), \({j, 1, m}\)\)]\), \(n - m\)\)]\) * \(Product[\(\(ChebyshevU[\(\(Subscript[\(i, j\)]\), z\)]\), \({j, 1, m}\)\)]\)\), \({\(Subscript[\(i, 1\)]\), 0, \(n - m\)}\), …, \({\(Subscript[\(i, m\)\ ]\), 0, \(n - m\)}\)\)]\)\)\)]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "m"]], "}"]]], RowBox[List["ChebyshevT", "[", RowBox[List["n", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List["m", "-", "1"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "!"]], " ", "n", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["i", "1"], "=", "0"]], RowBox[List["n", "-", "m"]]], RowBox[List["\[Ellipsis]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["i", "m"], "=", "0"]], RowBox[List["n", "-", "m"]]], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "m"], SubscriptBox["i", "j"]]], ",", RowBox[List["n", "-", "m"]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["ChebyshevU", "[", RowBox[List[SubscriptBox["i", "j"], ",", "z"]], "]"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> m </mi> </msup> <mrow> <msub> <mi> T </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> m </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> i </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </munderover> <mrow> <mo> &#8230; </mo> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> i </mi> <mi> m </mi> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </munderover> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <msub> <mi> i </mi> <mi> j </mi> </msub> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </mrow> </msub> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <msub> <mi> U </mi> <msub> <mi> i </mi> <mi> j </mi> </msub> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> m </ci> </degree> </bvar> <apply> <ci> ChebyshevT </ci> <ci> n </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> n </ci> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </uplimit> <apply> <times /> <ci> &#8230; </ci> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> i </ci> <ci> m </ci> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <ci> Subscript </ci> <ci> i </ci> <ci> j </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <ci> ChebyshevU </ci> <apply> <ci> Subscript </ci> <ci> i </ci> <ci> j </ci> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "m_"]], "}"]]]]], RowBox[List["ChebyshevT", "[", RowBox[List["n_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List["m", "-", "1"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "!"]], " ", "n", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["i", "1"], "=", "0"]], RowBox[List["n", "-", "m"]]], RowBox[List["\[Ellipsis]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["i", "m"], "=", "0"]], RowBox[List["n", "-", "m"]]], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "m"], SubscriptBox["i", "j"]]], ",", RowBox[List["n", "-", "m"]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["ChebyshevU", "[", RowBox[List[SubscriptBox["i", "j"], ",", "z"]], "]"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02