|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.04.25.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[(Sqrt[2/Pi] (ChebyshevT[n, x]/(1 - x^2)^(1/4)))
(Sqrt[2/Pi] (ChebyshevT[n, y]/(1 - y^2)^(1/4))), {n, 0, Infinity}] ==
DiracDelta[x - y] /; -1 < x < 1 && -1 < y < 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[FractionBox["2", "\[Pi]"]], FractionBox[RowBox[List["ChebyshevT", "[", RowBox[List["n", ",", "x"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["x", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]], ")"]], RowBox[List["(", RowBox[List[SqrtBox[FractionBox["2", "\[Pi]"]], FractionBox[RowBox[List["ChebyshevT", "[", RowBox[List["n", ",", "y"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]], ")"]]]]]], "\[Equal]", RowBox[List["DiracDelta", "[", RowBox[List["x", "-", "y"]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "x", "<", "1"]], "\[And]", RowBox[List[RowBox[List["-", "1"]], "<", "y", "<", "1"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mn> 2 </mn> <mi> π </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <msub> <mi> T </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mn> 2 </mn> <mi> π </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <msub> <mi> T </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> DiracDelta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> < </mo> <mi> x </mi> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> < </mo> <mi> y </mi> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <ci> ChebyshevT </ci> <ci> n </ci> <ci> x </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <ci> ChebyshevT </ci> <ci> n </ci> <ci> y </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> DiracDelta </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <cn type='integer'> -1 </cn> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <cn type='integer'> -1 </cn> <ci> y </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[FractionBox["2", "\[Pi]"]], " ", RowBox[List["ChebyshevT", "[", RowBox[List["n_", ",", "x_"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SqrtBox[FractionBox["2", "\[Pi]"]], " ", RowBox[List["ChebyshevT", "[", RowBox[List["n_", ",", "y_"]], "]"]]]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["x_", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["y_", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["DiracDelta", "[", RowBox[List["x", "-", "y"]], "]"]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "x", "<", "1"]], "&&", RowBox[List[RowBox[List["-", "1"]], "<", "y", "<", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|