| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/05.04.26.0004.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | ChebyshevT[n, z] == (-(1/Sqrt[Pi])) 
  Limit[m Sin[Pi m] MeijerG[{{1 + m, 1 - m}, {}}, {{0}, {1/2}}, (z - 1)/2], 
   m -> n] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", SqrtBox["\[Pi]"]]]], RowBox[List["Limit", "[", RowBox[List[RowBox[List["m", " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "m"]], "]"]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "m"]], ",", RowBox[List["1", "-", "m"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]]]], "}"]], ",", FractionBox[RowBox[List["z", "-", "1"]], "2"]]], "]"]]]], ",", RowBox[List["m", "->", "n"]]]], "]"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msub>  <mi> T </mi>  <mi> n </mi>  </msub>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mi> π </mi>  </msqrt>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munder>  <mi> lim </mi>  <mrow>  <mi> m </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> n </mi>  </mrow>  </munder>  <mo> ⁢ </mo>  <mtext>   </mtext>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> sin </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> m </mi>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "2"]], RowBox[List["1", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[FractionBox[RowBox[List["z", "-", "1"]], "2"], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["m", "+", "1"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "m"]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> T </ci>  <ci> n </ci>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <limit />  <bvar>  <ci> m </ci>  </bvar>  <condition>  <apply>  <tendsto />  <ci> m </ci>  <ci> n </ci>  </apply>  </condition>  <apply>  <times />  <ci> m </ci>  <ci> sin </ci>  <apply>  <times />  <pi />  <ci> m </ci>  </apply>  <apply>  <ci> MeijerG </ci>  <list>  <list>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  </list>  <list />  </list>  <list>  <list>  <cn type='integer'> 0 </cn>  </list>  <list>  <cn type='rational'> 1 <sep /> 2 </cn>  </list>  </list>  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ChebyshevT", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["Limit", "[", RowBox[List[RowBox[List["m", " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "m"]], "]"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "m"]], ",", RowBox[List["1", "-", "m"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]]]], "}"]], ",", FractionBox[RowBox[List["z", "-", "1"]], "2"]]], "]"]]]], ",", RowBox[List["m", "\[Rule]", "n"]]]], "]"]], SqrtBox["\[Pi]"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |