|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.05.26.0028.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ChebyshevU[n, z] == (-(Sqrt[2]/(Sqrt[Pi] (1 - z^2)^(1/4))))
SpheroidalQS[n + 1/2, 1/2, 0, z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["ChebyshevU", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[SqrtBox["2"], RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]]]], RowBox[List["SpheroidalQS", "[", RowBox[List[RowBox[List["n", "+", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", "0", ",", "z"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> U </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mtext> </mtext> </mrow> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <msub> <mi> QS </mi> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox[StyleBox["QS", "IT"], RowBox[List[TagBox[RowBox[List["n", "+", FractionBox["1", "2"]]], SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]]]]], "(", RowBox[List[TagBox["0", SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["z", SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]]]], ")"]], InterpretTemplate[Function[SpheroidalQS[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> ChebyshevU </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> SpheroidalQS </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 0 </cn> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ChebyshevU", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SqrtBox["2"], " ", RowBox[List["SpheroidalQS", "[", RowBox[List[RowBox[List["n", "+", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", "0", ",", "z"]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|