Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EulerE






Mathematica Notation

Traditional Notation









Polynomials > EulerE[n,z] > Integration > Definite integration > Involving the direct function





http://functions.wolfram.com/05.13.21.0003.01









  


  










Input Form





Integrate[EulerE[n, t] Sec[Pi t], {t, 0, 1}] == (-1)^((1 + n)/2) ((Pi^(-1 - n) n!)/4^n) (Zeta[1 + n, 1/4] - Zeta[1 + n, 3/4]) /; Element[(n + 1)/2, Integers] && (n + 1)/2 > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[RowBox[List["EulerE", "[", RowBox[List["n", ",", "t"]], "]"]], " ", RowBox[List["Sec", "[", RowBox[List["\[Pi]", " ", "t"]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["1", "+", "n"]], "2"]], FractionBox[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["n", "!"]], " "]], SuperscriptBox["4", "n"]], RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", FractionBox["1", "4"]]], "]"]], "-", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", FractionBox["3", "4"]]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[FractionBox[RowBox[List["n", "+", "1"]], "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List[FractionBox[RowBox[List["n", "+", "1"]], "2"], ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mn> 1 </mn> </msubsup> <mrow> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox[&quot;E&quot;, EulerE] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mi> &#960; </mi> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> <msup> <mn> 4 </mn> <mi> n </mi> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;1&quot;]], Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;4&quot;], Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[List[$CellContext`a, $CellContext`b], Zeta[$CellContext`a, $CellContext`b]]]] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;1&quot;]], Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;4&quot;], Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[List[$CellContext`a, $CellContext`b], Zeta[$CellContext`a, $CellContext`b]]]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <cn type='integer'> 1 </cn> </uplimit> <apply> <times /> <apply> <ci> EulerE </ci> <ci> n </ci> <ci> t </ci> </apply> <apply> <sec /> <apply> <times /> <pi /> <ci> t </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[RowBox[List[RowBox[List["EulerE", "[", RowBox[List["n_", ",", "t_"]], "]"]], " ", RowBox[List["Sec", "[", RowBox[List["\[Pi]", " ", "t_"]], "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["1", "+", "n"]], "2"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["n", "!"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", FractionBox["1", "4"]]], "]"]], "-", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", FractionBox["3", "4"]]], "]"]]]], ")"]]]], SuperscriptBox["4", "n"]], "/;", RowBox[List[RowBox[List[FractionBox[RowBox[List["n", "+", "1"]], "2"], "\[Element]", "Integers"]], "&&", RowBox[List[FractionBox[RowBox[List["n", "+", "1"]], "2"], ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29