|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.12.03.0026.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fibonacci[n, ChebyshevU[p - 1, Sqrt[5]/2]] == Fibonacci[n p]/Fibonacci[p] /;
Element[n, Integers] && n >= 1 && Element[p, Integers] && p >= 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List["n", ",", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["p", "-", "1"]], ",", FractionBox[SqrtBox["5"], "2"]]], "]"]]]], "]"]], "\[Equal]", FractionBox[RowBox[List["Fibonacci", "[", RowBox[List["n", " ", "p"]], "]"]], RowBox[List["Fibonacci", "[", "p", "]"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "1"]], "\[And]", RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "1"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <msub> <mi> U </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mfrac> <msqrt> <mn> 5 </mn> </msqrt> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mfrac> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </msub> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mi> p </mi> </msub> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> p </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Fibonacci </ci> <ci> n </ci> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Fibonacci </ci> <apply> <times /> <ci> n </ci> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <ci> Fibonacci </ci> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> p </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Fibonacci", "[", RowBox[List["n_", ",", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["p_", "-", "1"]], ",", FractionBox[SqrtBox["5"], "2"]]], "]"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["Fibonacci", "[", RowBox[List["n", " ", "p"]], "]"]], RowBox[List["Fibonacci", "[", "p", "]"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "1"]], "&&", RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|