Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Fibonacci






Mathematica Notation

Traditional Notation









Polynomials > Fibonacci[n,z] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/05.12.06.0001.01









  


  










Input Form





Fibonacci[n, z] \[Proportional] Sin[(Pi n)/2]^2 + (n/2) Cos[(Pi n)/2]^2 z + ((n^2 - 1)/8) Sin[(Pi n)/2]^2 z^2 + (((n^2 - 4) n)/48) Cos[(Pi n)/2]^2 z^3 + \[Ellipsis] /; (z -> 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "n"]], "2"], "]"]], "2"], "+", RowBox[List[FractionBox["n", "2"], SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "n"]], "2"], "]"]], "2"], "z"]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["n", "2"], "-", "1"]], "8"], SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "n"]], "2"], "]"]], "2"], SuperscriptBox["z", "2"]]], " ", "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["n", "2"], "-", "4"]], ")"]], "n", " "]], "48"], SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "n"]], "2"], "]"]], "2"], SuperscriptBox["z", "3"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mn> 48 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> Fibonacci </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <power /> <apply> <sin /> <apply> <times /> <pi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <pi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <sin /> <apply> <times /> <pi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -4 </cn> </apply> <ci> n </ci> <apply> <power /> <cn type='integer'> 48 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <pi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Fibonacci", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "n"]], "2"], "]"]], "2"], "+", RowBox[List[FractionBox["1", "2"], " ", "n", " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "n"]], "2"], "]"]], "2"], " ", "z"]], "+", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["n", "2"], "-", "1"]], ")"]], " ", SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "n"]], "2"], "]"]], "2"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[FractionBox["1", "48"], " ", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["n", "2"], "-", "4"]], ")"]], " ", "n"]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "n"]], "2"], "]"]], "2"], " ", SuperscriptBox["z", "3"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29