|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.12.27.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fibonacci[n, z] == (Exp[2 n ArcSinh[z/2]] - (-1)^n)/
(Exp[n ArcSinh[z/2]] Sqrt[z^2 + 4])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["Exp", "[", RowBox[List["2", " ", "n", " ", RowBox[List["ArcSinh", "[", FractionBox["z", "2"], "]"]]]], "]"]], "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]], RowBox[List[RowBox[List["Exp", "[", RowBox[List["n", " ", RowBox[List["ArcSinh", "[", FractionBox["z", "2"], "]"]]]], "]"]], " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "4"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mrow> <mrow> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 4 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Fibonacci </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <exp /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> <apply> <arcsinh /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <exp /> <apply> <times /> <ci> n </ci> <apply> <arcsinh /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Fibonacci", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "n", " ", RowBox[List["ArcSinh", "[", FractionBox["z", "2"], "]"]]]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["n", " ", RowBox[List["ArcSinh", "[", FractionBox["z", "2"], "]"]]]]], " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "4"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|