|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.12.27.0008.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fibonacci[n, z] == (((2 (-1)^(n + 1/4))/(Sqrt[2 - I z] Sqrt[z - 2 I]))
Sin[2 n ArcCsc[(2 (-1)^(3/4))/Sqrt[z - 2 I]]])/E^((I Pi n)/2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["2", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", RowBox[List["1", "/", "4"]]]]]]], RowBox[List[SqrtBox[RowBox[List["2", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], " ", SqrtBox[RowBox[List["z", "-", RowBox[List["2", " ", "\[ImaginaryI]"]]]]]]]], FormBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[" ", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "n"]]]], "2"]]]], TraditionalForm], RowBox[List["Sin", "[", RowBox[List["2", " ", "n", " ", RowBox[List["ArcCsc", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], SqrtBox[RowBox[List["z", "-", RowBox[List["2", " ", "\[ImaginaryI]"]]]]]], "]"]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Fibonacci </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> <apply> <arccsc /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Fibonacci", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", FractionBox["1", "4"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "n"]], ")"]]]]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "n", " ", RowBox[List["ArcCsc", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], SqrtBox[RowBox[List["z", "-", RowBox[List["2", " ", "\[ImaginaryI]"]]]]]], "]"]]]], "]"]]]], RowBox[List[SqrtBox[RowBox[List["2", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], " ", SqrtBox[RowBox[List["z", "-", RowBox[List["2", " ", "\[ImaginaryI]"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|